
JBoss at Work: A Practical Guide

By Scott avis, Tom arrs
...
Publisher: O'Reilly
Pub Date: October 2005
ISBN: 0-596-00734-5
Pages: 306

Table of Contents Index

Consisting of a number of well-known open source products, JBoss is more a family
of interrelated services than a single monolithic application. But, as with any tool
that's as feature-rich as JBoss, there are number of pitfalls and complexities, too.

Most developers struggle with the same issues when deploying J2EE applications on
JBoss: they have trouble getting the many J2EE and JBoss deployment descriptors
to work together; they have difficulty finding out how to get started; their projects
don't have a packaging and deployment strategy that grows with the application;
or, they find the Class Loaders confusing and don't know how to use them, which
can cause problems.

JBoss at Work: A Practical Guide helps developers overcome these challenges. As
you work through the book, you'll build a project using extensive code examples.
You'll delve into all the major facets of J2EE application deployment on JBoss,
including JSPs, Servlets, EJBs, JMS, JNDI, web services, JavaMail, JDBC, and
Hibernate. With the help of this book, you'll:

 Implement a full J2EE application and deploy it on JBoss

 Discover how to use the latest features of JBoss 4 and J2EE 1.4, including
J2EE-compliant web services

 Master J2EE application deployment on JBoss with EARs, WARs, and EJB
JARs

 Understand the core J2EE deployment descriptors and how they integrate
with JBoss-specific descriptors

 Base your security strategy on JAAS

Written for Java developers who want to use JBoss on their projects, the book
covers the gamut of deploying J2EE technologies on JBoss, providing a brief survey
of each subject aimed at the working professional with limited time.

If you're one of the legions of developers who have decided to give JBoss a try,
then JBoss at Work: A Practical Guide is your next logical purchase. It'll show you in
plain language how to use the fastest growing open source tool in the industry
today. If you've worked with JBoss before, this book will get you up to speed on
JBoss 4, JBoss WS (web services), and Hibernate 3.

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

JBoss at Work: A Practical Guide

By Scott avis, Tom arrs
...
Publisher: O'Reilly
Pub Date: October 2005
ISBN: 0-596-00734-5
Pages: 306

Table of Contents Index

? Copyright

? About the Author

? Preface

? ? Audience

? ? About This Book

? ? Assumptions This Book Makes

? ? Conventions Used in This Book

? ? Using Code Examples

? ? Safari Enabled

? ? Comments and Questions

? ? Acknow ledgments

? ? Chapter 1.?Getting Started w ith JBoss

? ? Section 1.1.?Why "JBoss at Work"?

? ? Section 1.2.?Why JBoss?

? ? Section 1.3.?The Example: JAW Motors

? ? Section 1.4.?The Tools

? ? Section 1.5.?Installing JBoss

? ? Section 1.6.?Deploying Applications to JBoss

? ? Section 1.7.?Looking Ahead...

? ? Chapter 2.?Web Applications

? ? Section 2.1.?The Servlet Container

? ? Section 2.2.?Three-Tier Applications

? ? Section 2.3.?Exploring the Presentation Tier

? ? Section 2.4.?Building the View Cars Page

? ? Section 2.5.?Adding a Model and Controller

? ? Section 2.6.?Looking Ahead...

? ? Chapter 3.?Building and Deploying an EAR

? ? Section 3.1.?WARs Versus EARs

? ? Section 3.2.?Application.xml

? ? Section 3.3.?Common JAR

? ? Section 3.4.?Deploying the EAR

? ? Section 3.5.?Adding a DAO

? ? Section 3.6.?Using XDoclet

? ? Section 3.7.?Looking Ahead...

? ? Chapter 4.?Databases and JBoss

? ? Section 4.1.?Persistence Options

? ? Section 4.2.?JDBC

? ? Section 4.3.?JNDI

? ? Section 4.4.?JNDI References in w eb.xml

? ? Section 4.5.?JBoss DataSource Descriptors

? ? Section 4.6.?JDBC Driver JARs

? ? Section 4.7.?Database Checklist

? ? Section 4.8.?Accessing the Database Using Ant

? ? Section 4.9.?Creating JDBCCarDAO

? ? Section 4.10.?Looking Ahead...

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

? ? Chapter 5.?Hibernate and JBoss

? ? Section 5.1.?The Pros and Cons of ORMs

? ? Section 5.2.?Hibernate Mapping Files

? ? Section 5.3.?Hibernate MBean Service Descriptor

? ? Section 5.4.?Creating a HAR

? ? Section 5.5.?Adding the HAR to the EAR

? ? Section 5.6.?Creating a JNDI Lookup

? ? Section 5.7.?Hibernate Checklist

? ? Section 5.8.?HibernateCarDAO

? ? Section 5.9.?Adding a Car

? ? Section 5.10.?Editing a Car

? ? Section 5.11.?Deleting a Car

? ? Section 5.12.?Looking Ahead...

? ? Chapter 6.?Stateless Session Beans

? ? Section 6.1.?Issues w ith EJBs

? ? Section 6.2.?Should I Use EJB or Not?

? ? Section 6.3.?Business Tier

? ? Section 6.4.?Enterprise JavaBeans

? ? Section 6.5.?Our Example

? ? Section 6.6.?Iteration 1Introduce a Session Bean

? ? Section 6.7.?Calling the Session Bean from the Controller Servlet

? ? Section 6.8.?EJB-Based JNDI References in Web-Based Deployment Descriptors

? ? Section 6.9.?Session Bean Types

? ? Section 6.10.?Session Beans

? ? Section 6.11.?Remote Versus Local EJB Calls

? ? Section 6.12.?Local and Remote Interfaces

? ? Section 6.13.?Home Interfaces

? ? Section 6.14.?Review ing Iteration 1

? ? Section 6.15.?Testing Iteration 1

? ? Section 6.16.?Iteration 2Move Business Logic Out of the Controller

? ? Section 6.17.?Review ing Iteration 2

? ? Section 6.18.?Testing Iteration 2

? ? Section 6.19.?Iteration 3Buy a Car

? ? Section 6.20.?The AccountingDTO

? ? Section 6.21.?Developing the HibernateAccountingDAO

? ? Section 6.22.?Adding buyCar() to the InventoryFacadeBean

? ? Section 6.23.?Review ing Iteration 3

? ? Section 6.24.?Testing Iteration 3

? ? Section 6.25.?Final Thoughts on Session Beans

? ? Section 6.26.?Looking Ahead ...

? ? Chapter 7.?Java Message Service (JMS) and Message-Driven Beans

? ? Section 7.1.?Sending Messages w ith JMS

? ? Section 7.2.?Upgrade the Site: Running a Credit Check

? ? Section 7.3.?JMS Architecture Overview

? ? Section 7.4.?JMS Messaging Models

? ? Section 7.5.?Creating a Message

? ? Section 7.6.?Sending the Message

? ? Section 7.7.?Core JMS API

? ? Section 7.8.?Sending a JMS Message

? ? Section 7.9.?JMS-Based JNDI References in Web-Based Deployment Descriptors

? ? Section 7.10.?Deploying JMS Destinations on JBoss

? ? Section 7.11.?JMS Checklist

? ? Section 7.12.?Message-Driven Beans (MDBs)

? ? Section 7.13.?MDB Checklist

? ? Section 7.14.?Testing the Credit Check

? ? Section 7.15.?Looking Ahead ...

? ? Chapter 8.?JavaMail

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

? ? Section 8.1.?Running a Credit Check

? ? Section 8.2.?Sending Email Messages w ith JavaMail

? ? Section 8.3.?Upgrading the MDB to Send an Email Message

? ? Section 8.4.?Sending an Email Message

? ? Section 8.5.?JavaMail-Based JNDI References in EJB Deployment Descriptors

? ? Section 8.6.?Automating JavaMail-Based JNDI References w ith XDoclet

? ? Section 8.7.?Deploying JavaMail on JBoss

? ? Section 8.8.?JavaMail Checklist

? ? Section 8.9.?Testing the Credit Check Notification Email

? ? Section 8.10.?Looking Ahead ...

? ? Chapter 9.?Security

? ? Section 9.1.?J2EE Security

? ? Section 9.2.?Web-Based Security

? ? Section 9.3.?Restricting Access w ith w eb.xml

? ? Section 9.4.?JAAS

? ? Section 9.5.?Deploying a JAAS-Based Security Realm on JBoss

? ? Section 9.6.?Testing Secure JSPs

? ? Section 9.7.?Protecting the Administrative Actions

? ? Section 9.8.?Web Security Checklist

? ? Section 9.9.?Integrating Web Tier and EJB Tier Security

? ? Section 9.10.?EJB Security

? ? Section 9.11.?EJB Security Checklist

? ? Section 9.12.?Looking Ahead ...

? ? Chapter 10.?Web Services

? ? Section 10.1.?Web Services Architecture

? ? Section 10.2.?JBoss 4.x and Web Services

? ? Section 10.3.?J2EE 1.4 and Web Services

? ? Section 10.4.?Implementing J2EE 1.4 Web Services

? ? Section 10.5.?Service Endpoint Interface (SEI)

? ? Section 10.6.?Modifying ejb-jar.xml

? ? Section 10.7.?w ebservices.xml

? ? Section 10.8.?JAX-RPC Mapping File

? ? Section 10.9.?WSDL File

? ? Section 10.10.?Set the Web Service URL

? ? Section 10.11.?Modifying the InventoryFacadeBean EJB

? ? Section 10.12.?Web Services Deployment

? ? Section 10.13.?Automating Web Services Deployment

? ? Section 10.14.?J2EE Web Services Checklist

? ? Section 10.15.?Testing Web Services Deployment

? ? Section 10.16.?Web Services Client

? ? Section 10.17.?Implementing a Web Service Client

? ? Section 10.18.?Web Service Client Checklist

? ? Section 10.19.?Testing the Web Service Client

? ? Section 10.20.?Final Thoughts on J2EE 1.4 Web Services

? ? Section 10.21.?Conclusion

? ? Section 10.22.?Congratulations!

? ? Appendix A.?ClassLoaders and JBoss

? ? Section A.1.?Namespaces

? ? Section A.2.?Class Loading in the J2EE

? ? Section A.3.?Class Loading w ith JBoss

? ? Section A.4.?Common ClassLoader Issues

? ? Section A.5.?ClassLoader Options

? ? Section A.6.?Solving ClassLoader Issues

? ? Section A.7.?Conclusion

? ? Appendix B.?Logging and JBoss

? ? Section B.1.?Jakarta Commons Logging (JCL) API

? ? Section B.2.?Apache Log4J

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

? ? Section B.3.?Adding Application-Specific Properties to System Properties

? ? Section B.4.?Configuring Log4J w ith a Configuration File

? ? Section B.5.?Loading Resources from the CLASSPATH

? ? Section B.6.?Logging Deployment

? ? Section B.7.?Logging Checklist

? ? Section B.8.?Testing Logging

? ? Section B.9.?Conclusion

? ? Appendix C.?JAAS Tutorial

? ? Section C.1.?JAAS

? ? Section C.2.?Client-Side JAAS

? ? Section C.3.?Conclusion

? Colophon

? Index

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

JBoss at Work: A Practical Guide

by Tom Marrs and Scott Davis

Copyright ?2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of
America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Colleen Gorman

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

October 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly Media, Inc. JBoss?at Work: A Practical Guide, the image of a golden eagle, and
related trade dress are trademarks of O'Reilly Media, Inc.

Java?and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is
independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 0-596-00734-5

[M]

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.processtext.com/abcchm.html

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

About the Author
Tom Marrs, a 20-year veteran in the software industry, is the Principal and Senior Software
Architect at Vertical Slice, a consulting firm that designs and implements mission-critical
business applications using the latest J2EE and open source technologies, along with providing
architecture evaluation and developer training and mentoring services. Tom teaches
Java/J2EE/JBoss training classes, speaks regularly at software conferences such as No Fluff
Just Stuff (http://www.nofluffjuststuff.com), and is a blogger on java.net and ONJava. An
active participant in the local technical community, Tom is the President of the Denver JBoss
User Group and has served as President of the Denver Java Users Group (
http://www.denverjug.org).

Scott Davis is a senior software engineer in the Colorado front range. He is passionate about
open source solutions and agile development. He has worked on a variety of Java platforms,
from J2EE to J2SE to J2ME (sometimes all on the same project).

Scott is a frequent presenter at national conferences and local user groups. He was the
president of the Denver Java Users Group in 2003 when it was voted one of the Top 10 JUGs
in North America. After a quick move north, he is currently active in the leadership of the
Boulder Java Users Group. Keep up with him at http://www.davisworld.org.

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.nofluffjuststuff.com
http://java.net
http://www.denverjug.org
http://www.davisworld.org
http://www.processtext.com/abcchm.html
http://www.nofluffjuststuff.com
http://www.denverjug.org
http://www.davisworld.org
http://www.processtext.com/abcchm.html

Preface
Are you curious about the cool, new features of JBoss 4 and J2EE 1.4? Are you frustrated with
all the simplistic "Hello World" examples? Do you want to see a realistic application deployed on
JBoss?

As practitioners, we've seen that most people struggle with the following issues when
deploying J2EE applications on JBoss:

 Real application deployment involves many J2EE and JBoss deployment descriptors, and
it's difficult to make them all work together.

 Developers new to JBoss need a way to get started.

 Most projects don't have a packaging and deployment strategy that grows with their
application.

 Class Loaders are confusing and can cause problems when developers don't know how
to use them.

This book shows you how to use JBoss with the latest Open Source Java tools. By building a
project throughout the book with extensive code examples, we cover all major facets of J2EE
application deployment on JBoss, including JSPs, Servlets, EJBs, JMS, JNDI, Web Services,
JavaMail, JDBC, and Hibernate.

With the help of this book, you'll:

 Implement a full J2EE application and deploy it on JBoss.

 Discover how to use the latest features of JBoss 4 and J2EE 1.4, including
J2EE-compliant Web Services.

 Master J2EE application deployment on JBoss with EARs, WARs, and EJB JARs.

 Understand the core J2EE deployment descriptors and how they integrate with
JBoss-specific descriptors.

 Deploy JSPs, Servlets, EJBs, JMS, Web Services, JavaMail, JDBC, and Hibernate on
JBoss.

 Base your security strategy on JAAS.

Although this book covers the gamut of deploying J2EE technologies on JBoss, it isn't an
exhaustive discussion of each aspect of the J2EE API. This book is meant to be a brief survey
of each subject aimed at the working professional with limited time.

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Audience
This book is for Java developers who want to use JBoss on their projects. If you're new to
J2EE, this book will serve as a gentle introduction. But don't mistake this book for a true J2EE
reference manual. There is a reason those books are 1,000+ pages longthey cover each
technology in exhaustive detail. This book gives you enough to get a simple example up and
running quickly.

If you've worked on J2EE projects but are new to JBoss, this book covers familiar concepts,
introduces you to key J2EE 1.4 issues including Web Services, and shows you how to make
them work with JBoss. If you've worked with JBoss before, this book will get you up to speed
on JBoss 4, JBoss WS (Web Services), and Hibernate 3.

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

About This Book
This book starts with a simple web page and iteratively shows you how to add the various
J2EE technologies to develop an application that runs on JBoss. Rather than getting stuck in
the details of every possible J2EE API or J2EE/JBoss deployment descriptor, we focus on
learning by doing. We introduce you to each topic, show what we're going to do, do it, and
recap what we did. By taking an iterative approach, we keep things short, sweet, and to the
point so that you can put JBoss to work on your projects.

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Assumptions This Book Makes
We assume that you've worked with Java and are familiar with Open Source tools such as Ant
and XDoclet. We show you how to download and install them. We provide you with Ant scripts
for compiling and deploying the application.

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such
as Alt and Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros, the contents of files, or the
output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "JBoss at Work: A Practical Guide, by Tom Marrs and Scott
Davis. Copyright 2005 O'Reilly Media, Inc., 0-596-00734-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:permissions@oreilly.com
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Safari Enabled

When you see a Safari?enabled icon on the cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://safari.oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/jbossatwork

We also have a companion web site for this book, where we have an FAQ, links to resources,
and bonus materials. Please visit:

http://www.jbossatwork.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
tom@jbossatwork.com
scott@jbossatwork.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.oreilly.com/catalog/jbossatwork
http://www.jbossatwork.com
mailto:bookquestions@oreilly.com
mailto:tom@jbossatwork.com
mailto:scott@jbossatwork.com
http://www.oreilly.com
http://www.processtext.com/abcchm.html
http://www.oreilly.com/catalog/jbossatwork
http://www.jbossatwork.com
http://www.oreilly.com
http://www.processtext.com/abcchm.html

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Acknowledgments
Many people contributed to this book's development. We're grateful to Mike Loukides, our
editor, for his experience, guidance, and direction. We'd like to thank him for believing in us
and being patient with two first-time authors as we learned our craft.

We had a great team of expert technical reviewers who helped ensure sure that the material
was technically accurate, approachable, and reflected the spirit of the JBoss, J2EE, and Open
Source communities. Our reviewers were Norman Richards, Greg Ostravich, Andy Ochsner, and
Dan Moore. Their suggestions and corrections greatly improved the quality of the book. We're
especially thankful to Norman Richards of JBoss, Inc. for his quick turnaround on show-stopper
issues and for all his great advice.

We owe a great debt to the Open Source community who made the tools for this book:

 To JBoss, Inc. for creating and maintaining JBoss, an outstanding and reliable J2EE
application server that we use on our jobs every day. JBoss is great and we love it. We
hope that the concept of Professional Open Source will continue to blossom and grow.

 To the Ant, XDoclet, Log4J, Apache Jakarta, Hibernate, and (numerous) Apache and
SourceForge projectsyou guys rock! Your tools keep the Java community going.

Tom's Acknowledgments

I am especially thankful to Scott Davis, my co-author, for exhorting me to finish the book,
holding me accountable, and for pushing me to improve my writing style. This book would've
been impossible without him.

Thanks to Richard Monson-Haefel, Sue Spielman, Bruce Tate, Brett McLaughlin, Frank Traditi
(my business coach), the Denver Java Users Group (DJUGhttp://www.denverjug.org), and
everyone else who encouraged me along the way.

Thanks to Jay Zimmerman, coordinator of the "No Fluff Just Stuff" (
http://www.nofluffjuststuff.com) conferences, for enabling me to take my message on the
road.

Thanks to The One Way Caf?in Aurora, COkeep the lattes and good advice flowing.

Most importantly, I am deeply grateful to my wife, Linda, and daughter, Abby, for supporting
me during the writing process. I love you and look forward to spending more time together.

Scott's Acknowledgments

Tom came to me with an opportunity to co-author a book for O'Reilly. How could I possibly
turn down a gig like that? Tom and I have known each other for years, and we knew from the
start that we brought complimentary skills to the table. This book was a collaborative effort in
every sense of the word, but it never would have happened if Tom hadn't planted the first
seed.

What started out as a wildly optimistic (and in retrospect, totally unrealistic) attempt to map
out the entire known world of Open Source J2EE development eventually got distilled down to
the book you are now holding. Even though this book is far more modest in scope than our
original idea, I think that it still captures the spirit of what we set out to accomplish. Without
getting bogged down in the whole commercial versus free versus open source quagmire, we
wanted to show you that it is possible to create a production-quality application using nothing
but freely available tools.

Thanks go out to the Denver and Boulder JUG communitieshanging out with all of you (too
numerous to mention individually) has made me a better programmer and a better person.
When I was a lone wolf contractor, your emails and IMs, phone calls and lunches, but
especially the post-meeting pints and horror story-swaps are what kept me sane through all
of it. When I was new to a city and a programming language, you made me feel like I
belonged.

A very warm thanks goes out to Jay and the whole NFJS crew (Ted, Bruce, Erik, Jason,
James, Mike, Stu, Justin, Glenn, David, Eitan, Dion, Ben, Dave, and the rest of y'all). After
attending my first conference, I knew that I wanted to be a part of it professionally. The
collective talent and charisma of the speakers is breathtaking. During a Fourth of July
celebration, my three year-old son Christopher said in awe, "Daddy, the fireworks are too big
for my eyes." No exaggerationI feel the same way when I'm on the NFJS tour.

But my deepest thanks and love goes to my family: Kim, Christopher, and little
soon-to-be-born Baby X. I did my best to keep my writing hours limited to after bedtime and
during naptime (Mom's and son's both), but I know that it crept into the waking hours as well.
Thanks for pretending for my benefit that it didn't matter. You are my everything.

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.denverjug.org
http://www.nofluffjuststuff.com
http://www.denverjug.org
http://www.nofluffjuststuff.com
http://www.processtext.com/abcchm.html

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 1. Getting Started with JBoss
Have you noticed that simply saying "I am a Java programmer" isn't enough these days? It
conveys a little bit of information, but not enough to make any serious decisions. It's kind of
like saying, "I play sports" or "I like food." A recruiter can assume that a Java programmer has
a passing familiarity with curly braces and semicolons, but little else.

The Java programming language runs on an incredibly diverse set of hardwarefrom cell phones
and PDAs down to embedded chips on a credit card; every major desktop and laptop,
regardless of operating system or hardware manufacturer; entry-level workgroup servers up to
clusters of high-end servers; and even mainframes.

The mantra in the heady early days of Java was, "Write once, run anywhere." The original
ideal of having the same application run anywhere from a cell phone to a large-scale cluster of
servers turned out to be more marketing hype than business reality, although the "run
anywhere" part of the slogan has proven remarkably prescient.

Modern Java developers often define themselves by the hardware they specialize in. J2ME
developers eke amazing functionality out of resource-starved micro-devices with limited
networking capabilities. J2SE programmers have mastered daunting but robust GUI frameworks
such as Swing and SWT for rich desktop application development. And J2EE software
engineers are masters of the server-side domain.

Saying that you are a J2EE programmer begins to narrow the field a bit, but our hypothetical
recruiter still doesn't have enough information to place you in the proper job. J2EE is a loose
collection of server-side technologies that are related, but are by no means homogenous.

Some J2EE experts specialize in web-related technologiesJSPs, Servlets, and the diverse
landscape of web frameworks such as Jakarta Struts or Sun's Java Server Faces. Others are
back-end specialists that focus more on the transactional integrity and reliability of business
processing that uses technologies such as EJBs, JMS, and relational databases. (We'll define
these acronyms later in the book.) There is even a new breed of Web Services specialists that
use the J2EE product suite and a host of related XML technologies, such as SOAP and WSDL,
to offer a Service Oriented Architecture to Java and non-Java clients alike.

Asking any one specialist to describe the J2EE toolkit brings to mind the story of the blind men
and the elephant. Each blind man describes the elephant based on the part he touchesthe
one holding the trunk describes a very different animal than the one holding the tusk or the
ear.

This book attempts to describe the whole elephant in the context of JBoss, an open source
J2EE container. Like the technology it implements, JBoss is not a single monolithic application.
Rather, it is a family of interrelated services that correspond to each item in the J2EE
collection.

Each chapter in this book explores one of the J2EE services, but unlike the blind men, we
show how one technology works in conjunction with the others. A J2EE application is often
greater than the sum of its parts, and understanding the J2EE collection means understanding
how each piece is interrelated.

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.1. Why "JBoss at Work"?
Before we get too far into things, we should explain why we chose the title JBoss at Work for
this book. Understanding the authors' backgrounds should help.

Both of us are practicing software engineers who have worked together off and on for years.
More importantly, both of us are former presidents of the Denver Java Users Group (
http://www.denverjug.org). When we polled the group for potential interest in a given
subject, the same phrase came up over and over again: "I don't want to be an expert in it, I
just want to make it work."

"I just want to make it work" really resonates with us because we feel the same way. An
ever-growing number of technologies fall under the J2EE umbrella, and there are at least two
or three competing implementations of each. Just trying to keep up is a never-ending battle.

There is a 1,000-page book out there for each topic we cover in only 20 to 30 pages. JBoss
At Work isn't intended to be an exhaustive discussion of every facet of the J2EE collection.
This book is meant to be a brief survey of each subject aimed at the working professional with
limited time"Give me an overview, show me some working code, and make it snappy...." (Think
of it as 12 months of JUG presentations collected in a single volume, minus the PowerPoint
slides and cold pizza.)

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.denverjug.org
http://www.processtext.com/abcchm.html
http://www.denverjug.org
http://www.processtext.com/abcchm.html

1.2. Why JBoss?
JBoss fits the "I just want to make it work" gestalt to a T. Depending on the speed of your
Internet connection, you can have it downloaded, unzipped, and running in less than five
minutes. Turning services on and off is as simple as adding or removing files from a directory.
The fact that it's free means that you don't get bogged down with per-seat or per-CPU
licensing costs. JBoss is both a great learning tool and a production-quality deployment
environment.

But any tool as powerful as JBoss also has pitfalls and complexities. The biggest disservice we
could do is show you how to write applications that are tied to a specific application server,
JBoss or otherwise. The "Write Once, Run Anywhere" promise of J2EE development may not
happen automatically, but you can take steps to minimize the impact of moving from one
application server to the next. In addition to your code being more portable, being a
non-partisan J2EE developer means that you and your skills are more portable as you move
from one job to the next.

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.3. The Example: JAW Motors
We have tried to come up with an application that uses each layer of the J2EE collection in
some sort of meaningful way. By design, this book is short on academic discussions and long
on working code examples. Showing a coherent business application in action will hopefully
give you a clearer idea of how the various layers interact, as opposed to a series of disjointed
"Hello World" examples exercising each layer in isolation.

The JAW Motors application supports a fictitious automobile dealership. Each chapter
progressively adds a new J2EE technology that solves a specific business problem. Viewing
cars on a website involves JSP pages and some form of persistence (JDBC or Hibernate).
Performing a credit check sends a JMS message and an email response using JavaMail.
Purchasing a car requires the transactional support of Stateless Session Beans. Sharing data
from the JAW Motors inventory with other dealerships involves setting up Web Services.

In addition to showing how JBoss works, we hope that these examples answer the how and
why of each technology: how is it used, and why it should (or shouldn't) be used. Just
because a hammer can sink a screw in drywall doesn't necessarily mean that it is the best tool
for the job. The measure of a successful J2EE application isn't how many of the technologies
it uses; it is how effectively each technology is used.

Source code for the JAW Motors application is available for download from
http://www.jbossatwork.com. We encourage you to download the files and build them as you
follow along in the book. We want you to literally see JBoss at work, not just read about it.

Before we get too far, let's make sure that you have all necessary tools to build and deploy
the application to JBoss.

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.jbossatwork.com
http://www.processtext.com/abcchm.html
http://www.jbossatwork.com
http://www.processtext.com/abcchm.html

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.4. The Tools
Making JBoss work involves more than just downloading and running JBoss. A cook certainly
needs to know how to run the oven, but a lot of preliminary work must happen before the dish
is ready for baking.

Professional chefs call this set up process "mis en place." They sharpen knives and place
cutting boards within arms' reach. They prepare ahead of time ingredients they can safely cut
up and measure before the dinner rush. Everything that can be done in terms of efficiency is
handled up front so the culinary artist isn't distracted by mundane details.

Similarly, making JBoss work effectively requires you to do a bunch of work up front. Code
must be compiled and packaged up in a specific way. You must wade through endless
deployment descriptors. If one tiny piece of information doesn't match up with its companion
in another file, the application will not deploy properly, and all of your hard work will be for
nothing.

The mis en place of JBoss development involves other tools that make it easy to handle the
mundane details of building and deploying your application. As in JBoss, you can download and
use all of these tools for free:

 Java

 Ant

 XDoclet

Let's talk briefly about how to install and configure them.

1.4.1. Installing Java

It probably goes without saying that the first thing you'll need is a working installation of Java.
JBoss 4.0.2 is compatible with J2SE 1.4 or higher. We use J2SE 1.4.2 in this book, although
nothing should prevent you from running the examples in Java 5.

Download the full JDK (Java 2 Development Kit) from Sun's web site (http://java.sun.com).
Follow Sun's instructions for installing the JDK on your operating system. Next, create an
environment variable called JAVA_HOME that points to the Java installation directory. Finally,
add $JAVA_HOME/bin to the system path so you can run Java from the command line.

To verify your Java installation, type java -version at a command prompt. You should see
Example 1-1.

Example 1-1. Output of java -version

rosencrantz:~ sdavis$ java -version

java version "1.4.2_07"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_07-215)

Java HotSpot(TM) Client VM (build 1.4.2-50, mixed mode)

rosencrantz:~ sdavis$

1.4.2. Installing Ant

We use Ant 1.6.5 to compile, package, and deploy the examples in this book. You can
download it from http://ant.apache.org.

To install Ant, simply unzip the downloaded file to the directory of your choice. Next, create
an environment variable called ANT_HOME that points to the Ant installation directory. Finally,
add $ANT_HOME/bin to the system path so you can run Ant from the command line.

To verify your Ant installation, type ant -version at a command prompt. You should see
Example 1-2.

Example 1-2. Output of ant -version

rosencrantz:~ sdavis$ ant -version

Apache Ant version 1.6.5 compiled on June 2 2005

rosencrantz:~ sdavis$

1.4.3. Installing XDoclet

We use XDoclet 1.2.3 to generate J2EE deployment descriptors, web.xml, and various other
J2EE configuration files for the JAW Motors application. XDoclet is a combination of custom
Ant tasks and special attributes that you include in your source code. You can download it
from http://xdoclet.sourceforge.net.

To install XDoclet, unzip the downloaded file into the directory of your choice. Next, create an
environment variable called XDOCLET_HOME that points to the XDoclet installation directory.

To verify your XDoclet installation, change to the $XDOCLET_HOME/samples directory and
type ant at a command prompt. You should see Example 1-3.

Example 1-3. Output of ant

rosencrantz:/Library/xdoclet-1.2.3/samples sdavis$ ant

[many lines deleted for clarity]

compile:

 [echo] +---+

 [echo] | |

 [echo] | C O M P I L I N G S O U R C E S |

 [echo] | |

 [echo] +---+

 [javac] Compiling 109 source files to

 /Library/xdoclet-1.2.3/samples/target/classes

jar:

 [echo] You can find the generated sources in the /samples/target/gen-src

 [echo] directory and the compiled classes in the /samples/target/classes

 [echo] directory. Enjoy!

BUILD SUCCESSFUL

Total time: 1 minute 23 seconds

rosencrantz:/Library/xdoclet-1.2.3/samples sdavis$

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com
http://ant.apache.org
http://xdoclet.sourceforge.net
http://java.sun.com
http://ant.apache.org
http://xdoclet.sourceforge.net
http://www.processtext.com/abcchm.html

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.5. Installing JBoss
Now that we have all prerequisites in place, we can get to the reason why you are here:
installing and running JBoss.

Download the JBoss Application Server Version 4.0.2 from http://www.jboss.org. Since it is
written in Java, the same installation files will work on Windows, Linux, Unix, or Mac OS X. Any
platform that has a JVM can run JBoss.

To install JBoss, simply unzip the downloaded file to the directory of your choice. Next, create
an environment variable called JBOSS_HOME that points to the JBoss installation directory.
Finally, add $JBOSS_HOME/bin to the system path so you can run JBoss from the command
line.

To verify your JBoss installation, type run at a command prompt (run.bat for Windows users,
run.sh for Linux/Unix/Mac users). You should see something like this in your terminal window:

 rosencrantz:/Library/jboss/bin sdavis$./run.sh

 ===

 ==============================

 JBoss Bootstrap Environment

 JBOSS_HOME: /Library/jboss

 JAVA: /System/Library/Frameworks/JavaVM.framework/home/bin/java

 JAVA_OPTS: -server -Xms128m -Xmx128m -Dprogram.name=run.sh

 CLASSPATH: /Library/jboss/bin/run.jar:/System/Library/Frameworks/

 JavaVM.framework/home/lib/tools.jar

 ===

 ==============================

 22:14:03,159 INFO [Server] Starting JBoss (MX MicroKernel)...

 22:14:03,177 INFO [Server] Release ID: JBoss [Zion] 4.0.2

 (build: CVSTag=JBoss_4_0_2 date=200505022023)

 22:14:03,181 INFO [Server] Home Dir: /Library/jboss-4.0.2

 [many lines deleted for clarity...]

 22:14:55,890 INFO [Http11Protocol] Starting Coyote

 HTTP/1.1 on http-0.0.0.0-8080

 22:14:56,396 INFO [ChannelSocket] JK: ajp13 listening on /0.0.0.0:8009

 22:14:56,519 INFO [JkMain] Jk running ID=0 time=0/240 config=null

 22:14:56,530 INFO [Server] JBoss (MX MicroKernel)

 [4.0.2 (build: CVSTag=JBoss_4_0_2 date=200505022023)]

 Started in 53s:238ms

If you don't see any exceptions scroll by, JBoss is up and running when you see the final line:
Started in xx ms. To stop JBoss, press ctrl+C.

Now that we're sure that everything runs, let's explore JBoss a bit more closely.

1.5.1. Touring the JBoss Directory Structure

JBoss has directory structure that resembles most open source projects (as shown in Figure
1-1). We're going to briefly point out what each directory holds, and then quickly move along.
You'll rarely need to make changes to them. JBoss is configured and ready to run out of the
box. You'll spend most of your time messing around with the server/ directory. This is where
you deploy your application.

Figure 1-1 shows a brief overview of each directory:

bin/

Start up and shut down scripts.

client/

JAR files used by external client applications that remotely access JNDI resources.

docs/

Strangely, the JBoss documentation is not found here. (It can be downloaded from
http://www.jboss.com/products/jbossas/docs.) Instead, you'll find various
subdirectories:

dtd/

XML DTDs describing the structure of J2EE standard and JBoss-specific deployment
descriptors. In J2EE 1.4, DTDs have been deprecated in favor of Schemas. The DTDs
are preserved here to support previous versions of the J2EE. JBoss still uses DTDs for
JBoss-specific descriptors.

examples/

Subdirectories with sample JBoss descriptors. The most notable among them is the jca
subdirectory that holds sample DataSource configuration files (*-ds.xml) for most of
the major relational databases. We'll discuss this directory in more detail in the JDBC
chapter.

licenses/

Licenses for all the different services.

schema/

XML Schemas (XSDs) describing the structure of J2EE 1.4 standard deployment
descriptors.

tests/

Unit and functional tests for JBoss.

Figure 1-1. JBoss directory structure

lib/

JAR files that make up JBoss.

server/

Sub-directories for the various server configurations. This is where you deploy your
applications.

1.5.2. Server Configurations

The server/ directory is the most interesting one of the bunch to us as J2EE developers. It is
where we configure JBoss services and deploy our applications.

Earlier in the chapter we said that JBoss was a family of interrelated services. This family of
services is called a Server Configuration. Three named server configurations are in the server/
directory: minimal, default, and all. The only difference among the three are the specific
services that run at startup.

minimal/

Includes only JNDI and logging services. As the name implies, it does not include any of
the other standard J2EE services (EJBs, JMS, or a web container).

default/

This is the base J2EE 1.4 configuration. It is what runs if you do not specify a server
configuration .

all/

This is the "kitchen sink" server configuration. It includes everything in the default
configuration plus services like clustering.

You can easily create your own Server Configuration by simply copying one of these
directories, giving it a unique name, and adding or removing services as you wish. We'll stick
with the default ones for this book, but feel free to experiment on your own.

When we started JBoss previously, it ran using the default configuration. Try starting JBoss
with the minimal configuration. At a command prompt, type run -c minimal. JBoss should start
up in a fraction of the time it took last time. You also should see far fewer lines in the console
output than you did last time.

Type ctrl+C at a command prompt to stop JBoss, and then run -c default to run the default
server configuration again. Notice all of the additional services that start up in the default
configuration.

JBoss is really just a thin JMX (Java Management Extenstions) microkernel. JMX is a framework
that allows you to interact with live, running code. You can start and stop services, gather
metrics, and even change parameters on the fly. Services that implement the JMX interface
are called "managed beans," or MBeans.

Each of the J2EE services that run inside JBoss is an MBean. Log4j, Tomcat, and Hibernate are
all MBeans. We'll talk about how to selectively turn them on and off in the next section.

You don't need to know anything about JMX to deploy an application to JBoss. You really don't
need to know it to configure JBoss, eitheryou'll just see the terminology come up from time to
time. JBoss is a great example of the power of JMX. (For more information on JMX, see Java
Management Extensions by J. Steven Perry.)

1.5.3. Touring the Server Configuration Directory Structure

A server configuration has three core subdirectories: conf/, deploy/, and lib/. Like the main
JBoss directories, you'll make changes to them only on rare occasions. Generally, you'll simply
drop your EAR or WAR file in the deploy/ directory and let JBoss handle the rest.

conf/

Includes configuration files for core services such as Log4J and JAAS

deploy/

Deployment directory for both dynamic JBoss services (MBeans) and your custom
applications (EARs and WARs)

lib/

JAR files to support the dynamic JBoss services (MBeans).

Look around the default/conf/ directory. The main Server Configuration file is
jboss-service.xml. The only reason why you might edit this file is to change a port that a
specific service runs on. Edit these values with carethe ports assigned to these services are
well known. Changing them could cause downstream services to fail.

Change to the default/lib/ directory. These JAR files make up the J2EE services. You might
drop an occasional database driver in here, but all the JARs that your application uses should
be included in the WAR or EAR lib/ directory.

Now change to the default/deploy/ directory. This is where we'll deploy the JAW application in
just a bit. For now, let's play around with the JBoss MBeans.

Make sure that you have JBoss open in one console window and the default/deploy/ directory
open in another. While JBoss runs, it constantly polls this directory looking for changes to the
configuration. Let's dynamically undeploy an MBean to see this process in action.

The easiest way to see the process is to create a $JBOSS_HOME/server/default/undeploy/
directory. (It can be named anything you like, but "undeploy" is a common choice.) Move the
hsqldb-ds.xml file to the undeploy/ directory and watch the JBoss console. You should see the
Hypersonic database service shut down and all of the related services reconfigure themselves.
Now move the file back from the undeploy/ directory to the deploy/ directory. Once again,
JBoss recognizes the change in configuration and adjusts itself accordingly.

Adding and removing services while JBoss is running is called "hot deployment." As you'll see in
the next section, you can hot deploy EARs and WARs as well.

Now that we've played around with JBoss a bit, let's deploy our first application.

Temporary Directories and Hot Deployment

The conf/, deploy/, and lib/ directories are always present in every Server
Configuration. You may, however, have noticed some additional ones as you were
exploring.

Once you've run a Server Configuration, several temporary directories are
created. Data/, log/, tmp/, and work/ are all directories used by the running
application. If JBoss is not running, you can safely delete these directories. They
will be recreated the next time you run the Server Configuration.

In later chapters, you will see that our Ant scripts delete these directories as part
of our deploy process. Our scripts are intended for "cold deployment"in other
words, we expect you to bring down JBoss, deploy your application, and then
restart the application server.

This conservative approach guarantees a clean deployment every time. We've
seen far too many failed hot deployments (in this application server and others) to
recommend them as a standard practice.

Symptoms of a failed hot deploy may include strange classloader exceptions, new,
unrecognized configuration settings, and lost application- and session-scoped
variables. If you patch your application to apply a critical bug-fix, we cannot in
good conscience recommend anything but a cold deploy.

We have had limited success with hot patches that simply update JSPs and, to a
lesser extent, patches that update class implementations without changing their
interfaces (especially if RMI is not involved). Your mileage may vary with hot
deployments, but our experience has shown that gambling is best saved for
weekend trips to Las Vegas.

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.jboss.org
http://www.jboss.com/products/jbossas/docs
http://www.jboss.org
http://www.jboss.com/products/jbossas/docs
http://www.processtext.com/abcchm.html

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.6. Deploying Applications to JBoss
J2EE applications are generally bundled up as Enterprise Archives (EARs) or Web Archives
(WARs). JBoss services can be bundled up as Service Archives (SARs). While each application
technically is nothing more than a simple Java Archive (JAR), they have special internal
directory structures and configuration files that must be present for the sake of the
application server. (We will discuss EARs and WARs in greater detail later in the book.)

Knowing when to use these different file types and where to place them can be confusing.
Here are some basic principles:

 $JBOSS_HOME/lib is for the application server's dependent libraries. These file types
should always be packaged as JARs. You should never put your own JARs in this
directory.

 $JBOSS_HOME/server/[server configuration]/lib is for the Server Configuration's
dependent libraries. These, too, should always be JARs. You may add an occasional
database driver JAR to this directory.

 $JBOSS_HOME/server/[server configuration]/deploy is for SARs, WARs, and EARs. Plain
old JARs will be ignored if placed here directly, although all three types of files may
themselves contain JARs.

If you haven't done so already, go to http://www.jbossatwork.com and download the code
examples. Once you've unzipped the downloaded file, copy jaw.war from the ch01/ 01a-test
directory to $JBOSS_HOME/server/default/deploy. In the JBoss console window, you should
see the deployed test application.

To verify that the application was deployed correctly, open a web browser and go to
http://localhost:8080/jaw (see Figure 1-2).

Figure 1-2. JAW Motors web page

Note that our WAR is treated no differently than an MBean. If you move jaw.war to the
undeploy/ directory, JBoss will dynamically unload it, as it did with Hypersonic earlier.

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.jbossatwork.com
http://localhost:8080/jaw
http://www.jbossatwork.com
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.7. Looking Ahead...
Now that you've had a chance to see JBoss at work, let's begin writing our web application.
The next chapter walks you through the basics of building and deploying a WAR.

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 2. Web Applications
In this chapter, we'll begin writing the JAW Motors application. First, we'll explain some basic
architectural principles like the MVC pattern of web development. Then we'll explore the
building blocks of the web tier (JSP, JSTL, CSS, and servlets). Finally, we'll use ANT to create
WAR files and deploy them to JBoss.

Our goal is not to teach you these technologies and techniques from scratchthey should be
familiar to most web developers already. This chapter is meant to be a quick overview and
demonstration of the technology working in JBoss. For deeper look into web tier software and
development best practices, look at Head First Servlets & JSP, by Bryan Basham, Kathy Sierra,
and Bert Bates (O'Reilly).

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

2.1. The Servlet Container
The servlet container is the core J2EE technology that powers the web tier. It is considered a
container because JSPs and servlets cannot run as standalone applicationsthey must
implement special interfaces and run "inside" the container. The container listens for HTTP
requests on a given port, hands the incoming data to your custom components, and uses the
resulting output to create a well-formed HTML document to return to the web browser as the
response.

The JBoss developers wisely chose not to create their own servlet container to meet this
need. A number of excellent ones already are out there. Rather than recreating the wheel,
JBoss allows you to integrate the servlet container of your choice.

Tomcat 5.5.9 is the default servlet container included with JBoss 4.0.2. It is deployed as a
SAR in $JBOSS_HOME/server/default/deploy/jbossweb-tomcat55.sar.

If you are comfortable working with Tomcat, you should have no trouble working in JBoss. All
the usual configuration files and JARs are in the Tomcat directory. For example, edit
server.xml to change the port Tomcat listens on. (8080 is the default.) To change the default
session timeout from 30 minutes, edit conf/web.xml. (For more information about installing and
configuring Tomcat, see Tomcat: The Definitive Guide by Jason Brittain and Ian F. Darwin
(O'Reilly).)

Thanks to the modular design of JBoss, swapping out Tomcat for another servlet container is
easy. Jetty is another option that is fast, mature, and open source. (As a matter of fact, it
was the default container included with JBoss 3.x.) Go to
http://jetty.mortbay.org/jetty/download.html to download a pre-built SAR, ready to drop in
and run.

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://jetty.mortbay.org/jetty/download.html
http://www.processtext.com/abcchm.html
http://jetty.mortbay.org/jetty/download.html
http://www.processtext.com/abcchm.html

2.2. Three-Tier Applications
Before we dive into writing our code, let's take a moment to talk about some architectural
principles. This discussion will set the stage for this chapter and the rest of the book.

The parts of a J2EE application fall into three basic tiers:

 The presentation tier is the collection of J2EE components that comprise the UI. For
web applications, this tier includes components like Servlets and JSPs.

 The business tier is so named because it is where your business logic lives. The
technologies that live here include EJBs and MDBs.

 The persistence tier is where your data is stored for the long term. It generally
involves a relational database, but isn't limited to that. You could store your data as
XML, serialized JavaBeans, or even plain old ASCII text files.

In a well-engineered application, components in each tier are "highly cohesive" and "loosely
coupled". By highly cohesive, we mean that each component should do only one thing. By
loosely coupled, we mean that components across the tiers shouldn't depend on one another
unnecessarily.

For example, a getCars() method call should return only data. The data shouldn't be
preformatted into HTML. If it is, your data tier knows too much about the presentation tier.
The two tiers are highly coupled.

An unfortunate side effect of this coupling is that deciding to add a new presentation
technology later (like a Swing client) will force you to rewrite a portion of your persistence tier
as well. If instead your persistence tier returns data and lets the presentation tier concern
itself with the formatting, then you can reuse your persistence tier across multiple UIs.
Loosely coupled tiers encourage reuse.

You also could argue that the persistence tier fails the highly cohesive test. It is concerned
with too many thingsdata and presentation. A clean separation of concerns is what we are
hoping to accomplish.

This notion of tiers guided both the JAW Motors application architecture and the layout of this
book. The book starts with the presentation tier in the first few chapters, moves through the
persistence tier in the middle chapters and tackles business tier issues in the latter chapters.

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

2.3. Exploring the Presentation Tier
So, here we are at the presentation tier . The same principles of high cohesiveness and loose
coupling are as applicable within this tier as they are across tiers. In the presentation tier, it
is known as the Model / View / Controller (MVC) pattern.

 The view is the actual screen. It is implemented using JSPs, CSS, and taglibs like the
JSTL. It is concerned only about formatting the data in a pleasing way.

 The model is the data. In a "View Cars" screen, the model is a Plain Old Java Object
(POJO). In our case, it is a simple JavaBean named CarBean .

 The controller mediates communication between the View and the Model. If a
"viewCarList" request comes in, it retrieves the CarBeans from the persistence layer
and hands them to the view. In a web application, the controller generally is a servlet.

Why Didn't You Use Framework X?

Perhaps the only thing more contentious among programmers than the argument
over which text editor to use is which web framework to use. There are over 30
different Java-based web frameworks out there to choose from.

The dirty little secret of choosing a framework is that they are more similar than
they are different. They all follow the same basic MVC pattern. So whether you
choose to use Struts, JSF, Webwork, Tapestry, or any of the others, you are
doing essentially the same thingusing a MVC framework.

While the frameworks all have similar philosophies, they differ in terms of
implementation. Rather than choosing one and risk having you get lost in the
details of the specific framework, we took the coward's way out and rolled our own
MVC. We felt that this would allow us to clearly demonstrate how each J2EE
technology interacts, and hopefully avoid the wrath of the jilted framework
aficionado.

On most projects, we generally go with the framework the team has the most
experience with, but you shouldn't feel obligated to choose any of them. We'll use
a framework if the added functionality merits the additional overhead, but in the
spirit of agile development we'll often use the "home grown" framework presented
here for quick and dirty prototypes. By adhering to the basic principles of the MVC
pattern, moving from our homegrown framework to a "real" one later in the
development cycle is reasonably painless.

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.4. Building the View Cars Page
Let's begin by implementing the View Cars page. As you can imagine, the first thing most
people do when they visit a car dealership is walk around the lot to see which cars the dealer
has in stock. In a similar vein, we'll create a view that allows visitors to "walk the lot" via the
web.

This view also gives us an excuse to explore the structure of a WAR file. We'll deploy the WAR
to JBoss and see it run in container. Once we have that much under our belt, we'll swing back
around and do a quick refactoring to implement the model and controller.

2.4.1. Iteration 1: HTML

JSPs are plain HTML files with some templating capabilities that enable us to plug in data
dynamically at runtime. Here is an example of our page using static HTML. (We'll add the
dynamic content in just a moment.) Example 2-1 should give you a basic feel for what the
webpage will look like, and Figure 2-1 shows the result in a web browser.

Example 2-1. carList.html

<html>

<body>

 <table border="1">

 <tr>

 <th bgcolor="cccccc" align="left">Make</th>

 <th bgcolor="cccccc" align="left">Model</th>

 <th bgcolor="cccccc" align="right">Model Year</th>

 </tr>

 <tr>

 <td align="left">Toyota</td>

 <td align="left">Camry</td>

 <td align="right">2005</td>

 </tr>

 <tr>

 <td align="left">Toyota</td>

 <td align="left">Corolla</td>

 <td align="right">1999</td>

 </tr>

 <tr>

 <td align="left">Ford</td>

 <td align="left">Explorer</td>

 <td align="right">2005</td>

 </tr>

 </table>

</body>

</html>

Figure 2-1. carList.html rendered in a web browser

2.4.2. Iteration 2: JSP and JSTL

Now that we see what we are working toward, let's make this page dynamic. To start, we'll fill
the data table using pluggable values rather than using static HTML.

While you can include straight Java code in JSPs, this practice is generally frowned upon.
First, this "scriptlet" code is not compiled until runtime. This means that your users bear the
brunt of missed semicolons and fat-fingered method calls. It also encourages "copy and paste"
reuse. Without compiled code, you cannot test it thoroughly, JAR it up, and reuse it across
applications. Most importantly, scriptlets aren't tag-based. By relying on them, you mix
programming and tag-based technologies.

The solution to all these problems is Tag Libraries (taglibs). Taglibs are compiled Java classes
that emit well-formed fragments of HTML. Once you've identified a taglib at the top of your
JSP, you can mix the new tags in right along with the native JSP tags. Since taglibs are stored
in a JAR file, they can be distributed easily and reused across applications.

The JSP Standard Tag Library (JSTL) allows you to use custom tags to do the dynamic things
you'd normally do using code or scriptletsinsert data into the page dynamically, perform
do/while loops, and use if/then branches, for example. Two JARs make up the the JSTL
standard.jar and jstl.jar. As you'll see in a moment, you should include these JARs in your
WAR's WEB-INF/lib directory.

Here is the same page using the JSTL to populate the table. Don't worry about the scriptlet at
the topwe have a bit of a "chicken and egg" situation on our hands. We use the scriptlet only
because we don't have a model or controller in place yet. It will be the first thing to go once
we implement the remaining parts of the MVC framework. Focus instead on the JSTL code
used to populate the HTML table, as in Example 2-2.

Example 2-2. carList-jstl.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%

 // DON'T FREAK OUT!!! This scriptlet code will go away once

 // we have a model and controller in place...

 String[][] carList = {

 {"Toyota", "Camry", "2005"},

 {"Toyota", "Corolla", "1999"},

 {"Ford", "Explorer", "2005"}

 };

 pageContext.setAttribute("carList", carList);

%>

<html>

<body>

 <table border="1">

 <tr>

 <th bgcolor="cccccc" align="left">Make</th>

 <th bgcolor="cccccc" align="left">Model</th>

 <th bgcolor="cccccc" align="right">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td align="left">${car[0]}</td>

 <td align="left">${car[1]}</td>

 <td align="right">${car[2]}</td>

 </tr>

 </c:forEach>

 </table>

</body>

</html>

Notice that our source code became considerably shorter. We're using a JSTL forEach loop to
walk through each value in the string array instead of building out the entire table by hand. By
doing so, we have to describe the row only once instead of for each car, as in the previous
HTML example.

The syntax used to fill in the <td> elements${car[0]}is the JSP Expression Language (EL). It's
not truly tag-based, but is used often in conjunctions with the JSTL. You can use a <c:out>
JSTL tag if you'd prefer to use only tag-based solutions.

2.4.3. Iteration 3: CSS

Our source code has gotten considerably more concise, but we're not done optimizing yet.
There still is a lot of repetitive formatting syntax in place. The Don't Repeat Yourself (DRY)
principle is in serious violation at this point.

You can solve this problem by incorporating a bit of Cascading Style Sheet (CSS) magic. CSS
is not a J2EE technologyit is part of the HTML standard. Even though Java discussions don't
mention it much, it should be an indispensable part of any J2EE developer's toolkit. It allows
you to separate presentation details from your data by centralizing styling instructions in a
single file.

This brings several benefits along for the ride. It keeps your HTML code clean and concise by
eliminating all formatting markup. It allows you to create semantic, descriptive styles instead
of relying on physical styling. Most importantly, it allows you to change your look and feel
globally by modifying a single file. (This is called "skinning" your web site.)

Example 2-3 is a simple example of a CSS-styled JSP page.

Example 2-3. carList.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%

 // DON'T FREAK OUT!!! This scriptlet code will go away once

 // we have a model and controller in place...

 String[][] carList = {

 {"Toyota", "Camry", "2005"},

 {"Toyota", "Corolla", "1999"},

 {"Ford", "Explorer", "2005"}

 };

 pageContext.setAttribute("carList", carList);

%>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

</head>

<body>

 <table>

 <tr>

 <th>Make</th>

 <th>Model</th>

 <th class="model-year">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td>${car[0]}</td>

 <td>${car[1]}</td>

 <td class="model-year">${car[2]}</td>

 </tr>

 </c:forEach>

 </table>

</body>

</html>

Example 2-4 is a default CSS-styled JSP page.

Example 2-4. default.css

table

{

 border-style: solid;

 border-color: #aaa;

 border-width: 1px;

}

th

{

 color: #000;

 background-color: #ccc;

 border-style: solid;

 border-color: #aaa;

 border-width: 1px;

 font-weight: bold;

 text-align: left;

}

td

{

 color: #000;

 background-color: #fff;

 border-style: solid;

 border-color: #aaa;

 border-width: 1px;

 text-align: left;

}

.model-year

{

 text-align: right;

}

Notice the link to the stylesheet in the JSP's <head> section. This tells the web browser to
download the stylesheet and use it to render the page. If the stylesheet cannot be found at
the address provided, the web page still will be rendered without an error message or any
indication that there was a problem. This means that you can supply a bogus address up front
and drop in a valid CSS file reference later on. (Of course if your page isn't formatted the way
you'd expect, the link to the CSS file is a good place to start troubleshooting.)

In the CSS file, you can set up rendering styles for both built-in tags (table, th) and custom
names (model-year). If you plan to apply the style to multiple tags, begin the named style with
a period. This creates a CSS class. If you want to limit it to a single use per page (like
"footer", "copyright", etc.), begin the named style with a hash ("#"), which creates a CSS ID.

We've only scratched the surface of CSS capabilities. In addition to using it for styling, you
can use it to precisely position your HTML elements on the screen. This sets the stage for
advanced web UI tricks like tabbed interfaces and drag-and-drop. For a more comprehensive
discussion of CSS, see Cascading Style Sheets: The Definitive Guide by Eric A. Meyer
(O'Reilly).

2.4.4. Deploying the Application as a WAR File

Now that our webpage is looking good, let's bundle everything up into a WAR file and deploy
it. The WAR file, as you might guess from its name (Web ARchive), is a collection of
presentation tier files. Bundling them up into a single file makes it easy to deploy a complete
web application. Recall from the last chapter that all you need to do to deploy a web
application in JBoss is copy the WAR file into the $JBOSS_HOME/server/default/deploy
directory.

In the spirit of high cohesiveness, the WAR file should not contain files that pertain to the
other tiers (like EJBs or persistence code). The next chapter discusses the anatomy of an
Enterprise Archive (EAR) file. The EAR file is a meta-wrapper, bundling your presentation tier
WAR with additional JARs that support the persistence and business tiers.

If you haven't done so already, visit http://www.jbossatwork.com and download the sample
code bundle. Unzip it to the directory of your choice and change to the ch02 directory. You
should see a number of subdirectoriesone for each example in this chapter. Change to
/02-view/webapp. Type ant to compile the application and create the WAR file, as in Example
2-5.

Example 2-5. Building the WAR using Ant

Buildfile: build.xml

clean:

 [delete] Deleting directory

 /Users/sdavis/Desktop/jbossatwork/ch02/02-view/webapp/build

compile:

 [mkdir] Created dir:

 /Users/sdavis/Desktop/jbossatwork/ch02/02-view/webapp/build

 [mkdir] Created dir:

 /Users/sdavis/Desktop/jbossatwork/ch02/02-view/webapp/build/classes

war:

 [mkdir] Created dir:

 /Users/sdavis/Desktop/jbossatwork/ch02/02-view/webapp/build/distribution

 [war] Building war:

 /Users/sdavis/Desktop/jbossatwork/ch02/02-view/webapp/build/

 distribution/jaw.war

all:

BUILD SUCCESSFUL

Total time: 2 seconds

Copy the resulting WAR file to $JBOSS_HOME/server/default/deploy to deploy it. Visit
http://localhost:8080/jaw to see it in action. Follow the View Inventory link to see the list of
cars.

2.4.5. A Deeper Examination of the WAR

Notice that the URL of your web application is the same as the WAR filename. This URL is
called the Context Root . The next chapter shows you how to set your Context Root to be
anything, independent of your WAR name. To do this, you'll need to package things up in an
EAR. Before getting into the complexity of EARs, though, you need a solid understanding of
the WAR file structure.

Most graphical zip utilities can display WAR file contents, as in Example 2-6. For fans of the
command line, type jar tvf jaw.war.

Example 2-6. Contents of jaw.war

 0 Mon Mar 28 21:41:50 MST 2005 META-INF/

 103 Mon Mar 28 21:41:48 MST 2005 META-INF/MANIFEST.MF

 837 Mon Mar 28 21:33:16 MST 2005 carList-jstl.jsp

 637 Mon Mar 28 21:31:56 MST 2005 carList.html

 823 Mon Mar 28 21:28:20 MST 2005 carList.jsp

 448 Mon Mar 28 21:41:40 MST 2005 default.css

 226 Mon Mar 28 21:14:52 MST 2005 index.jsp

 0 Mon Mar 28 21:26:42 MST 2005 WEB-INF/

 399 Mon Mar 28 21:01:44 MST 2005 WEB-INF/web.xml

 0 Mon Mar 28 21:41:50 MST 2005 WEB-INF/classes/

 0 Mon Mar 28 21:41:50 MST 2005 WEB-INF/lib/

 20682 Fri Feb 11 20:05:08 MST 2005 WEB-INF/lib/jstl.jar

393259 Fri Feb 11 20:05:08 MST 2005 WEB-INF/lib/standard.jar

The root of your WAR file is your web application root. Notice index.jspthis file is the starting
page of your application. You'll see momentarily that this is specified in web.xml. Along for the
ride are your other JSP and CSS files.

Your compiled java classes and library JARs are stored in the WEB INF directory. Files in
WEB-INF are hidden from public viewweb users cannot see the directory contents or any of its
subdirectories from their browser. They can, however, call a resource stored in WEB-INF (like
a servlet), as long as it was configured in web.xml.

As you might have guessed by now, WEB-INF/web.xml (Example 2-7) is an important file to be
familiar with. It is the main web deployment descriptor file.

Example 2-7. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd">

 <!-- The Welcome File List -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

</web-app>

For now, web.xml only identifies the welcome file list. It is common practice to name your
main file index.jsp, but you can use any arbitrary name you'd like as long as it is listed here.
This file will continue to grow throughout the book. Web.xml is where you identify servlets,
JNDI lookups, and security options, among many other things.

What About jboss-web.xml?

As you scan the JBoss discussion forums and mailing lists, you'll see an occasional
reference to another deployment descriptorjboss-web.xml.

Web.xml is the standard deployment descriptor for web applications. By design, it
is meant to be standard across all Servlet containers. The flip side is that it
doesn't allow container-specific settings. Jboss-web.xml fills this gap. As the name
suggests, the settings in this file are specific to JBoss deployments.

There is no need for jboss-web.xml right now, so we didn't include it. You'll see it
pop up in the coming chapters.

2.4.6. Ant

You could painstakingly assemble the WAR by hand, or simply use the WAR task included in
Ant. While you're deciding which path to take, look at the Ant task in Example 2-8.

Example 2-8. WAR Ant Task

<target name="war" depends="compile"

 description="Packages the Web files into a WAR file">

 <mkdir dir="${distribution.dir}" />

 <war destFile="${distribution.dir}/${war.name}"

 webxml="${web.inf.dir}/web.xml">

 <!-- files to be included in / -->

 <fileset dir="${web.dir}" exclude="WEB-INF/web.xml" />

 <!-- files to be included in /WEB-INF/classes -->

 <classes dir="${classes.dir}" />

 <!-- files to be included in /WEB-INF/lib -->

 <lib dir="${lib.dir}" />

 <!-- files to be included in /WEB-INF -->

 <webinf dir="${web.inf.dir}" excludes="web.xml" />

 </war>

 </target>

In case you're not fluent in XML-ese, this task gathers up all files from their various locations
and puts them in the appropriate WAR file spot:

 All JSPs and web files from ${web.dir} are placed in the root of the directory structure

 The classes (servlets and the like) from ${classes.dir} are placed in WEB-INF/classes

 The supporting JAR files (like the JSTL) from ${jar.dir} are placed in WEB-INF/lib

 The miscellaneous config files from ${web.inf.dir} are placed in WEB-INF

Once the WAR file is pieced together, the Ant task places it in ${distribution.dir} (which in
our case is build/distribution). Notice the EL-like syntax? It allows us to define variables at the
top of the file and reuse them throughout.

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.jbossatwork.com
http://localhost:8080/jaw
http://www.jbossatwork.com
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.5. Adding a Model and Controller
Now we have a working skeleton. Let's add the model and controller to complete the MVC
framework.

2.5.1. The Model

The model is a Plain Old Java Object (POJO). You've built classes like this a thousand times
before. CarBean is nothing more than a class with three member variables and the associated
accessors and mutators.

As you saw in the previous JSP example, using string arrays for data storage doesn't yield
very expressive source code. We use an object-oriented programming language to build
objects that have a deeper semantic meaning than a pile of primitive data types. In Example
2-9, you can see that CarBean is nothing more than a class with three member variables and
the associated accessors and mutators. Car.make, Car.model, and Car.modelYear mean
something to us, as opposed to the use of string [0], string [1], and string [2].

Example 2-9. CarBean.java

package com.jbossatwork;

public class CarBean

{

 private String make;

 private String model;

 private String modelYear;

 public CarBean(String make, String model, String modelYear)

 {

 this.make = make;

 this.model = model;

 this.modelYear = modelYear;

 }

 public String getMake()

 {

 return make;

 }

 public void setMake(String make)

 {

 this.make = make;

 }

 public String getModel()

 {

 return model;

 }

 public void setModel(String model)

 {

 this.model = model;

 }

 public String getModelYear()

 {

 return modelYear;

 }

 public void setModelYear(String modelYear)

 {

 this.modelYear = modelYear;

 }

}

Now that we have a model, let's change our JSP to iterate through an ArrayList of CarBeans
instead of a simple string array (Example 2-10). The number of lines of code hasn't really
changed, but hopefully the source code is far more readable using the JavaBean. (And yes,
that pesky scriptlet code is still around. Once we get our Controller in place, we'll be able to
replace it with something a bit more production-worthy.)

Example 2-10. carList.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ page import="java.util.ArrayList,

 com.jbossatwork.CarBean"%>

<%

 // DON'T FREAK OUT!!! This scriptlet code will go away once

 // we have a controller in place...

 ArrayList carList = new ArrayList();

 carList.add(new CarBean("Toyota", "Camry", "2005"));

 carList.add(new CarBean("Toyota", "Corolla", "1999"));

 carList.add(new CarBean("Ford", "Explorer", "2005"));

 pageContext.setAttribute("carList", carList);

%>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

</head>

<body>

 <table>

 <tr>

 <th>Make</th>

 <th>Model</th>

 <th class="model-year">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td>${car.make}</td>

 <td>${car.model}</td>
 <td class="model-year">${car.modelYear}</td>

 </tr>

 </c:forEach>

 </table>

</body>

</html>

Notice that our EL has changed to reference the individual attributes of the JavaBean instead
of using array notation. EL automatically calls the getters and setters behind the scenes. We
are left with code that is almost plain English"put the car make here, the car model there."

2.5.2. The Controller

Now the question is how will the JSP get its hands on the populated ArrayList? If you call the
JSP directly (as we do in index.jsp:), there's really no way to do the
required setup for the view. Oh sureJSTL tags allow you to make SQL calls directly from your
JSPs, but that doesn't sound "highly cohesive," now, does it?

Enter the controller. If our link sends us to the controller instead of directly to the JSP, the
controller can get the cars from the database, put them in memory, and redirect us to the
JSP. Our new link looks like this: . This link calls the
controller in Example 2-11, asking it to perform the viewCarList action.

Example 2-11. ControllerServlet.java

package com.jbossatwork;

import java.io.IOException;

import java.util.List;

import java.util.ArrayList;

import javax.servlet.*;

import javax.servlet.http.*;

public class ControllerServlet extends HttpServlet

{

 private static final String ACTION_KEY = "action";

 private static final String VIEW_CAR_LIST_ACTION = "viewCarList";

 private static final String ERROR_KEY = "errorMessage";

 private static final String ERROR_PAGE="/error.jsp";

 public void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException, ServletException {

 processRequest(request, response);

 }

 public void doPost(HttpServletRequest request, HttpServletResponse

response)

 throws IOException, ServletException {

 processRequest(request, response);

 }

 protected void processRequest(

 HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String actionName = request.getParameter(ACTION_KEY);

 String destinationPage = ERROR_PAGE;

 // perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 List carList = new ArrayList();

 carList.add(new CarBean("Toyota", "Camry", "2005"));

 carList.add(new CarBean("Toyota", "Corolla", "1999"));

 carList.add(new CarBean("Ford", "Explorer", "2005"));

 request.setAttribute("carList", carList);

 destinationPage = "/carList.jsp";

 }

 else

 {

 String errorMessage = "[" + actionName + "] is not a valid

action.";

 request.setAttribute(ERROR_KEY, errorMessage);

 }

 // Redirect to destination page.

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(destinationPage);

 dispatcher.forward(request, response);

 }

}

The controller gets the action parameter off of the request stack and branches to the
appropriate code block. (For now, we have only one action in place: VIEW_CAR_LIST_ACTION.)
The controller creates the CarBeans, sticks them in an ArrayList named carList, and puts the
list into Request scope. At the end of the processRequest() method it redirects us to the
appropriate JSP.

Now that the controller handles the data setup, we can finally remove the scriptlet code from
our JSP to get Example 2-12. It's looking pretty lean and mean at this point. (Go back and
look at the original HTML-only example we started with to gauge just how far we've come.)

Example 2-12. carList.jsp (Final Version)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

</head>

<body>

 <table>

 <tr>

 <th>Make</th>

 <th>Model</th>

 <th class="model-year">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td>${car.make}</td>

 <td>${car.model}</td>

 <td class="model-year">${car.modelYear}</td>

 </tr>

 </c:forEach>

 </table>

</body>

</html>

Notice that the JSTL for loop finds the carList object automatically in the Request scope. We
don't have to tell it where to go looking for it.

The last thing we need to do is add the servlet to web.xml. In the coming chapters we'll use
XDoclet to dynamically generate this file on the fly. For now, we'll just hand-edit the file in
Example 2-13.

Example 2-13. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd">

 <!-- servlet definition -->

 <servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 </servlet>

 <!-- servlet mapping -->

 <servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>/controller/*</url-pattern>

 </servlet-mapping>

 <!-- The Welcome File List -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

</web-app>

The <servlet> section allows us to create an alias for the class. This alias makes it easier to
refactor later on. It shields us from class and package name changes, but also means that we
can swap entirely different servlet classes in and out for testing purposes, with nothing but a
single line change in web.xml.

The <servlet-mapping> section exposes hidden WEB-INF resources to the public. The
<url-pattern> allows you to set up any name you'd like. We remapped
com.jbossatwork.ControllerServlet to simply controller.

With all of this in place, we're ready to build and deploy again. Change to the ch02-mvc
directory and type ant. Copy the new jaw.war to the deploy directory. Visit
http://localhost:8080/jaw to see it in action.

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

2.6. Looking Ahead...
As this application matures, the various pieces get pushed into different tiers. Instead of the
servlet creating the CarBeans out of thin air, it will pass the request to an EJB. The EJB will
eventually get the information out of a database. But for now we completed the first step
toward a fully realized J2EE application.

If you are familiar with agile development methodologies, you know that having one working
application in the hand is worth two that are still stuck in development. Even though the UI is
just the tip of the iceberg in terms of the entire application, having this much in place is a
huge milestone.

Nothing makes an application seem more real than a working set of screens, even if (as is the
case here) it has nothing of substance behind the fa de. It allows the user to see the
program far more clearly and persuasively than index cards, white board drawings, or cocktail
napkins. From the developer's perspective, it gives a clear idea of what blanks still need to be
filled in (persistence, business logic, etc.).

Perhaps most importantly, it allows the UI to have the longest usage cycle. By the time the
application is fully implemented, you and the users will have spent enough time working with
the UI that all the usability and look-and-feel issues will have been long since been hammered
out. As one of our customers said, "Because I was working with the screens from the very
beginning, by the time the final application was delivered, I felt like I was already an expert."

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 3. Building and Deploying an
EAR
In the last chapter we introduced you to web applications, but the web tier is just one part of
the J2EE spectrum. In this chapter, we'll expand the JAW application from a simple WAR file
into a full-fledged EAR.

We'll explore the different parts of an EAR file. We'll build a Common JAR containing classes
that can be shared across all tiers of the application. Finally, we'll play with various Ant and
XDoclet tasks to create our EAR and dynamically generate the deployment descriptors JBoss
needs.

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.1. WARs Versus EARs
The WAR file is a convenient way to bundle up all pieces of a web application. All servlet
containers know how to deploy a WAR filethey expand the bundle, look for the WEB-INF
directory, and read the web.xml found there for further deployment instructions.

The EAR file provides the same type of functionality for a full-fledged J2EE application. JBoss
expands the EAR, finds the required deployment descriptors, and proceeds from there.

An EAR is like a carton of eggsit keeps everything organized. While the carton doesn't add any
direct value to your omelet, it makes getting the eggs home from the store so easy that you
wouldn't think about transporting eggs any other way.

Each egg in your EAR carton is a specific piece of the J2EE puzzle. These eggs (or JARs) come
in three basic varieties called "modules":

Web module

A WAR file containing presentation tier components

EJB module

An EJB JAR file containing the middle-tier components (EJBs, MDBs, etc.)

Java module

A regular JAR file containing classes and libraries that are shared across the entire
application. An application client JAR and a common JAR are two examples of Java
modules.

An EAR can contain at least one of any of these modules. By the same token, any of them
can be safely omitted if they aren't needed. Figure 3-1 shows the structure of an EAR file.

Figure 3-1. EAR file structure

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

3.2. Application.xml
Just as a WAR file contains a web.xml deployment descriptor, an EAR file contains a file
named application.xml. It is essentially a packing list, telling the J2EE server exactly what files
the EAR contains and where you can find the files relative to the root of the EAR. The EAR
file's META-INF directory stores application.xml.

Example 3-1 shows the JAW Motors application.xml file.

Example 3-1. application.xml

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

 version="1.4">

 <display-name>JBossAtWorkEAR</display-name>

 <module>

 <web>

 <web-uri>webapp.war</web-uri>

 <context-root>jaw</context-root>

 </web>

 </module>

 <module>

 <java>common.jar</java>

 </module>

</application>

The elements in application.xml should be pretty self-explanatory. We are telling the
application server the name of each JAR and what function it serves.

Notice that Web modules allow you to specify one other valuethe <context-root>. Recall from
the previous chapter that the context root is your web site's URL. If you deploy a simple WAR
file, the name of the WAR will be used as the URL. When your WAR file is deployed inside an
EAR, this element allows you to override the physical name of the WAR and use whatever URL
you'd like.

Although not shown in this example, <security-role> is another important element in
application.xml. The <security-role> element describes (what else?) the security roles used
throughout a J2EE application for both web and EJB components. Defining security roles in
application.xml provides a single place to set up J2EE declarative security without duplicating
it in web.xml and ejb-jar.xml. The Security chapter describes <security-role> in greater
detail.

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
http://www.processtext.com/abcchm.html

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.3. Common JAR
In the previous chapter, we created a CarBean POJO to hold the various attributes of a car.
We stored it in the WAR file because, well, you didn't have any other choice at that time. We
should now reconsider the storage location for the CarBean to maximize its reuse.

By the end of this book, we will pull cars out of a database in the persistence tier, and hand
them to objects in the business tier, which ultimately will pass them up to the presentation
tier. An object that is shared across tiers is a perfect candidate for the Common JAR .

In addition to custom domain objects, the Common JAR is a great location to store common
libraries such as Log4J or JDOM. While both WARs and EJB JARs have lib directories, they are
best used for tier-specific libraries. For example, the JSTL JARs belong in the WARthey have
no other purpose than to support the creation of web pages. On the other hand, logging is
something that happens throughout the codebaseit really belongs in a common JAR.

Let's factor our CarBean out of the WAR and into the Common JAR. In addition to moving
directories, we're going to rename it to better describe its purpose in the application.

The suffix "Bean" is a bit overloaded: it includes JavaBeans, Enterprise Java Beans, Session
Beans, Message-Driven Beans, JMX MBeans, and the list goes on. The design pattern that
best describes the CarBean's function is a Data Transfer Object (DTO), so when we move the
bean, we'll also rename it CarDTO. The source code will remain the same, but the name will give
us a better idea about the true purpose of the class.

3.3.1. Exploring the New Directory Structure

The previous chapter included only the webapp directory. If you change to the ch03/03a-ear
directory, you'll see that we've expanded to a webapp directory and a common directory.

We also expanded from one to three build.xml files. Each subdirectory has its own build.xml,
and the master build file lives in the top-level directory. The goal is to keep each portion of
the application as autonomous as possible. Granted, most of the application will depend on the
common sub-project , but by providing individual Ant scripts you have the opportunity to build
each portion of the project separately.

3.3.1.1. The common sub-project

Take a moment to explore the common sub-project. It contains a single classCarDTO. We have
created a new package structure to store all DTOscom.jbossatwork.dto.

You can build this sub-project by typing ant in the common directory. It compiles the CarDTO
class and bundles it up into a JAR file. After you've built the sub-project, change to the
build/distribution directory and type jar tvf common.jar to verify that the CarDTO class is
indeed stored in common.jar.

3.3.1.2. The webapp sub-project

The only change to the webapp sub-project from the previous chapter is the removal of the
CarDTO class. To accommodate this change, we now must import the com.jbossatwork.dto
package at the top of ControllerServlet.

We also have to change our build.xml script to include the common.jar in our classpath.
Notice that the definition of common.jar.dir uses a relative path to step up one level from the
basedir of the webapp sub-project and down into the common sub-project's output directory in
Example 3-2.

Example 3-2. webapp build.xml

<property name="lib.dir" value="lib"/>

<property name="compile.lib.dir" value="compile-lib"/>

<property name="common.jar.dir" value="../common/build/distribution"/>

<path id="compile.classpath">

 <fileset dir="${compile.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${common.jar.dir}">

 <include name="**/*.jar"/>

 </fileset>

</path>

Introducing cross project dependencies like this is not without risk. If you try to build the
webapp sub-project before the common project is built, the build will fail because the dependent
JAR won't be present. Of course, most other sub-projects will have dependencies on the
common project by designthe common project is meant to hold objects that will be shared across
all tiers.

Having the webapp sub-project rebuild the common project every time could be an unnecessary
step if the common project changes infrequently. If we do not couple the webapp build process
to the common build process, webapp developers can informally baseline the common project by
only rebuilding it when they make a conscious effort to do so.

Type ant in the webapp top-level directory to build the WAR file. Change to build/distribution
and type jar tvf webapp.war to see the contents. Verify that CarDTO is no longer present in
the WAR.

3.3.1.3. The master build

To ensure that each project gets builtin the proper orderwe created a master build file. This
file doesn't actually compile any code; rather, it calls the appropriate build files of each
sub-project in the proper order and then EARs up the results. Any failure of any sub-build will
fail the master build, so we can rest assured that a successful master build is predicated on
each individual build completing successfully.

To invoke a build script in another directory, we use the <ant> task. Here is what our compile
target looks like in the master build.xml file in Example 3-3.

Example 3-3. master build.xml

<target name="compile" description="Compiles all Java code">

 <echo message="##### Building common #####" />

 <ant dir="${common.dir}" target="all" >

 <property name="jar.name" value="${common.jar.name}"/>

 </ant>

 <echo message="##### Building webapp #####" />

 <ant dir="${webapp.dir}" target="all" >

 <property name="war.name" value="${webapp.war.name}"/>

 <property name="common.jar.dir"

value="${basedir}/${common.jar.dir}"/>

 </ant>

 </target>

Notice that we also can override properties in the child build process. In both instances, we
override the name of the JAR or WAR file specified in the child build. In the case of the webapp
build, we can no longer use the same relative path: your base directory is different now, so
trying to move up a level and over doesn't work. We pass the webapp build file a fully qualified
path to the common output directory.

3.3.1.4. Ant EAR task

The final step in the process is to EAR up the results of the webapp and common builds. Just as
there is a WAR task, Ant also provides us with an EAR task, as in Example 3-4.

Example 3-4. master build.xml

<target name="ear" depends="compile">

 <ear destFile="${distribution.dir}/${ear.name}"

 appxml="${meta-inf.dir}/application.xml" >

 <!-- files to be included in / -->

 <fileset dir="${webapp.war.dir}" />

 <fileset dir="${common.jar.dir}" />

 </ear>

 </target>

Notice that the EAR task requires us to pass it a well-formed application.xml file. Example 3-5
shows what a simple one looks like.

Example 3-5. application.xml

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

 version="1.4">

 <display-name>JBossAtWorkEAR</display-name>

 <module>

 <web>

 <web-uri>webapp.war</web-uri>

 <context-root>jaw</context-root>

 </web>

 </module>

 <module>

 <java>common.jar</java>

 </module>

</application>

To verify the results of the master build, change to the build/distribution directory and type
jar tvf jaw.ear. You should see webapp.war, common.jar, and application.xml. We are now
ready to deploy the EAR file .

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
http://www.processtext.com/abcchm.html

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.4. Deploying the EAR
Let's make sure that the WAR files from the previous chapters don't end up conflicting with
our EAR file. Delete jaw.war from the deploy directory before moving on. Now we're ready to
drop in our newly created EAR file.

Deploying an EAR by hand is no different than deploying a WAR by hand. Copy jaw.ear to
$JBOSS_HOME/server/default/deploy. Your JBoss console should let you know that it was
deployed successfully, as in Example 3-6.

Example 3-6. JBoss console output showing a successful EAR
deployment

22:37:55,659 INFO [EARDeployer] Init J2EE application:

 file:/Library/jboss-4.0.1/server/default/deploy/jaw.ear

22:37:55,853 INFO [TomcatDeployer] deploy, ctxPath=/jaw,

 warUrl=file:/Library/jboss-4.0.1/server/default/tmp/deploy/

 tmp25111jaw-ear.ear-contents/webapp.war/

22:37:56,159 INFO [EARDeployer] Started J2EE application:

 file:/Library/jboss-4.0.1/server/default/deploy/jaw-ear.ear

Automated Deployments Using Ant

Ant allows you to do far more than simply compile and bundle up your Java
application. It has tasks that let you create and delete directories and copy files
to a local subdirectory or a remote server by using ftp or scp. Using tasks like
exec, rexec, or sshexec, you can even remotely start and stop JBoss.

It's not hard to imagine completely automating the deployment process with an
Ant script. But just because you can do something doesn't always mean you
should.

Automating deployment to a test server certainly will help speed up your
development iterations. But deployments to a production server should be taken a
bit more seriously. Upgrading a production application is something that should be
done deliberately, and in our opinion, should be done by hand.

If you provide an Ant task to deploy your application to a production server, you
almost certainly guarantee that you will invoke it accidentally at the most
inopportune time.

Since we point at a test server for this book, we've provided a convenient couple
of Ant targets to deploy your EAR. To do a hot deploy, make sure that you have
the $JBOSS_HOME environment variable set, and then simply type ant deploy. The
Ant task will copy the EAR file to the correct location for you.

If you want to do a cold deploy, shut down JBoss, type Ant cleandeploy, and then
start JBoss back up again. The cleandeploy target will delete the existing EAR file
and several temporary directories. Running cleandeploy against a running JBoss
instance will cause bad things to happen, so make sure that JBoss is not running
before invoking it.

Visit http://localhost:8080/jaw to confirm that the application was indeed deployed and still
works as expected. Yes, this application doesn't look or behave any differently than the one in
the Web chapter. But we added hundreds of lines of new codeisn't that the true measure of a
successful J2EE project? (Only kidding....)

In all seriousness, we haven't added any new functionality that the user would notice, but we
have set the stage for easy future growth and maximum flexibility. Knowing that the other
tiers are coming up soon, these changes will allow you to incorporate the new technology with
minimal effort. Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.5. Adding a DAO
In that spirit, let's add another component that will pay dividends in future flexibility. Right
now, your servlet is creating the car list each time a request comes in. This really isn't
optimal. Servlets should deal with the mechanics of the HTTP request/response cycle. They
shouldn't perform persistence tier tasks.

We aren't quite ready to install a database (that happens in the next chapter), but we can
lay the groundwork by creating a Data Access Object (DAO). A DAO is a layer of abstractionit
hides the actual persistence specifics behind a common interface.

The DAO we create in this chapter still stores the DTO objects in a simple ArrayList. In the
next chapter, the DAO will pull car data from a database that uses JDBC. In the chapter after
that, it will use Hibernate (an Object/Relational Mapper) to do the same thing. By getting the
DAO in place now, however, we'll be able to make these implementation changes without
affecting presentation-tier code. Loose coupling and high cohesion comes to the rescue again.

The CarDAO provides a findAll() method that returns a List of CarDTOs. The source code in
Example 3-7 can be found in the common directory in ch03b-dao.

Example 3-7. CarDAO.java

package com.jbossatwork.dao;

import java.util.*;

import com.jbossatwork.dto.CarDTO;

public class CarDAO

{

 private List carList;

 public CarDAO()

 {

 carList = new ArrayList();

 carList.add(new CarDTO("Toyota", "Camry", "2005"));

 carList.add(new CarDTO("Toyota", "Corolla", "1999"));

 carList.add(new CarDTO("Ford", "Explorer", "2005"));

 }

 public List findAll()

 {

 return carList;

 }

 }

The corresponding change in the ControllerServlet calls the newly created DAO in Example
3-8.

Example 3-8. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new CarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

Not only does this change simplify the code in the servlet, it feels more correct as well. The
servlet concerns itself solely with web mechanics and delegates the database tasks to a
dedicated class. Another pleasant side effect of this is reuseyour data access code can now
be called outside of the web tier. If a business tier object needs access to this data, it can
make the same call that we make.

Build and deploy the code to verify that we haven't broken your application with this change.

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.6. Using XDoclet
The last thing we'll do in this chapter is one more tiny bit of automation.

One of the most important parts of the WAR file is the deployment descriptorweb.xml. It lists
each servlet and tells the servlet container how to deploy them. By maintaining this file by
hand, you almost certainly guarantee that you will forget to update it when you add new
components to your application. By using XDoclet in your build process, we can generate it
automatically by using nothing but your source code and some well-placed comments.

XDoclet is a collection of custom Ant tasks that generate code during the build process.
Sometimes XDoclet can generate the necessary code or deployment descriptor using just the
source code. At other times, you'll need to add custom comments to nudge XDoclet along in
the right direction.

We have only one servlet right nowControllerServlet. Example 3-9 shows what your web.xml
must contain to deploy this servlet correctly.

Example 3-9. web.xml

 <!-- servlet definition -->

 <servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 </servlet>

 <!-- servlet mapping -->

 <servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>/controller/*</url-pattern>

 </servlet-mapping>

Look in ch03c-xdoclet/src for the new ControllerServlet source code in Example 3-10. Notice
the XDoclet comments we've added.

Example 3-10. ControllerServlet.java

/**

 * @web.servlet

 * name="Controller"

 *

 * @web.servlet-mapping

 * url-pattern="/controller/*"

 */

public class ControllerServlet extends HttpServlet

See how they correspond to the web.xml elements? Now let's look at build.xml to see the
newly added XDoclet Ant tasks. We first need to create a couple of new variables, as in
Example 3-11.

Example 3-11. Defining XDoclet variables in build.xml

<property name="xdoclet.lib.dir" value="${env.XDOCLET_HOME} /lib"/>

<property name="gen.source.dir" value=" ${build.dir}/gensrc"/>

Xdoclet.lib.dir points to the XDoclet jars. If we have a defined $XDOCLET_HOME environment
variable, build.xml should be automatically pointed in the right direction. (Recall that we
installed XDoclet in Chapter 1.)

The second variable defines a new location for our dynamically generated code. By keeping
our compiled code and generated source code in the same location (build.dir), we can easily
delete and recreate it each time we run the Ant tasks. It also gently reminds us that we
shouldn't store generated artifacts in source control.

Next, we need to set up a new classpath that includes the XDoclet libraries. We keep XDoclet
stuff separate from our regular build process, as in Example 3-12. This ensures that we don't
inadvertently create dependencies in our deployed code.

Example 3-12. XDoclet Library Path in build.xml

 <path id="xdoclet.lib.path">

 <fileset dir="${xdoclet.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${compile.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

Next we create the generate-web target in Example 3-13.

Example 3-13. generate-web target in build.xml

<!-- ====================================== -->

 <target name="generate-web" description="Generate web.xml">

 <taskdef name="webdoclet"

 classname="xdoclet.modules.web.WebDocletTask"

 classpathref="xdoclet.lib.path" />

 <mkdir dir="${gen.source.dir}" />

 <webdoclet destdir="${gen.source.dir}">

 <fileset dir="${source.dir}">

 <include name="**/*Servlet.java" />

 </fileset>

 <deploymentdescriptor destdir="${gen.source.dir}"

 distributable="false"

 servletspec="2.4" />

 </webdoclet>

 </target>

Let's step through this:

 To start, we need to define the WebDoclet task. We don't need to use the <taskdef>
tag for core Ant tasks, but for third-party tasks, this directive shows Ant where to find
the implementation code.

 Next, we create the destination directory for our generated code.

 Finally, we call the <webdoclet> task. As you might guess, it generates web-tier code.
In later chapters, we'll see other XDoclet tasks such as <hibernatedoclet> and
<ejbdoclet>.

 The <filesetdir> tags tells the <webdoclet> task to look for the source code.

 The <deploymentdescriptor> tag tells <webdoclet> to generate web.xml.

 We use the distributable="false" attribute since we are not in a clustered JBoss
environment. It adjusts web.xml appropriately.

To make sure that our new target gets called at the appropriate time, we add it as a
dependency to the war target in Example 3-14.

Example 3-14. war target in build.xml

<!-- ====================================== -->

 <target name="war" depends="generate-web,compile"

 description="Packages the Web files into a WAR file">

 <mkdir dir="${distribution.dir}" />

 <war destFile="${distribution.dir}/${war.name}"

 webxml="${gen.source.dir}/web.xml">

 <!-- files to be included in / -->

 <fileset dir="${web.dir}" exclude="WEB-INF/web.xml" />

 <!-- files to be included in /WEB-INF/classes -->

 <classes dir="${classes.dir}" />

 <!-- files to be included in /WEB-INF/lib -->

 <lib dir="${lib.dir}" />

 <!-- files to be included in /WEB-INF -->

 <webinf dir="${web.inf.dir}" excludes="web.xml" />

 </war>

 </target>

Notice that we changed the webxml attribute in the war task to point to the newly generated
web.xml file.

Type ant in the webapp directory to rebuilt the subproject. You should see console output
that looks like this:

Buildfile: build.xml

clean:

 [delete] Deleting directory /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build

generate-web:

 [mkdir] Created dir: /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build/gensrc

[webdoclet] (XDocletMain.start 47)

 Running <deploymentdescriptor/>

[webdoclet] Generating web.xml.

compile:

 [mkdir] Created dir: /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build/classes

 [javac] Compiling 1 source file to /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build/classes

war:

 [mkdir] Created dir: /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build/distribution

 [war] Building war: /Users/sdavis/Desktop/jbossatwork/ch03/

 03c-webdoclet/webapp/build/distribution/jaw.war

all:

BUILD SUCCESSFUL

Total time: 6 seconds

Look at the newly generated web.xml in build/gensrc. In addition to the required servlet
elements, the comments show the various other parts of web.xml that can be generated as
required by our application. Clearly, we have just scratched the surface of what the
<webdoclet> task brings to the table.

Deploy jaw.ear one last time to make sure our application still behaves as expected.

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

3.7. Looking Ahead...
We've covered a lot of ground in these first few chapters. We now have a single EAR file that
encapsulates many moving parts of our J2EE application. We have automated the build
process where it is appropriate, and set the stage for future growth.

In the next several chapters, we'll leave the web tier and move on to the persistence tier.
We've stored our DTOs in an ArrayList for long enoughlet's tackle saving them in a true
database.

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 4. Databases and JBoss
Up to this point, this book has focused on the web tier. Now let's look at the persistence tier.
This is where the application data is stored for the long termfor example, between server
restarts.

Why use the phrase "persistence tier" instead of simply calling it the "database tier"? We
certainly recognize that the probability of information ending up in a database approaches is
somewhere close to 100%. J2EE pundits love pointing out that data could be stored in any
number of mannersas flat files, XML, and even web services to remote servers. These types of
storage are mentioned as alternatives, but we have yet to work on an application where they
completely usurp the trusty database.

Instead, most modern persistence technologies deal with transforming relational database
information into Java objects. These Object/Relational Mappers (ORMs) come in many
flavorscommercial and open sourcebut make the same promise: to free the Java developer
from the perils of converting ResultSets to ArrayLists of DTOs.

We continue to use the phrase "persistence tier" to remind us that many supporting services
surround the inevitable database.

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.1. Persistence Options
You should acknowledge one simple fact up front: if you deal with a relational database, all
roads in one form or another lead to JDBC. Whether you write the code yourself or let an ORM
write it for you, SQL INSERTs, UPDATEs, and DELETEs are the lingua franca of any
database-driven application.

While Sun maintains that JDBC is not an acronym, it looks suspiciously like "Java DataBase
Connectivity" to many seasoned programmers. It is the API that allows us to load up
database Drivers, make Connections, and create Statements that yield ResultSets upon
execution.

While nothing is intrinsically wrong with ResultSets, OO purists bristle at the thought of dealing
with a semi-structured collection of strings and primitives. Java programmers are taught from
a tender young age that JavaBeans and DTOs are the one true way to represent business
objects. So to get from ResultSets to DTOs, we must use hand-code methods that do the
transformation for us, one car.setName(resultSet.getString("name")) at a time.

While this isn't terribly difficult, it does get tedious as the number of business objects and
database tables grow. Maintaining two separate data schemas, one in Java and the other in
SQL, strikes many as a flagrant violation of the DRY principle. The phrase "impedance
mismatch" often comes up in JDBC discussions.

One potential way to avoid the problem of marshalling and unmarshalling JavaBeans is to
remove the root causewhy not just create a database that deals natively with objects? On
paper, object-oriented databases (OODBMS) seem to be the ideal solution to this problem.
Sadly, OODBMSes have never gained any serious market share.

If you can't change the root data sourceand relational databases are deeply entrenched in
most long-term persistence strategiesyour only other option is to come up with an API that
manages the impedance mismatch: something that allows you to deal with native JavaBeans,
and not only hides the JDBC complexity from you, but ideally entirely creates and manages the
infrastructure.

One of the earliest attempts at this was the now infamous Entity Bean offering in the EJB
specification. Entity beans came in two basic variations: Bean-Managed Persistence (BMPs)
and Container-Managed Persistence (CMPs).

BMPs were really nothing more that a fancy way of saying, "I'm going to keep on doing the
JDBC wrangling that I've already been doing." Since the Bean was responsible for its own
persistence implementation, many programmers fell back on what they knew best
car.setName(resultSet.getString("name")).

CMPs were closer to what we were hoping to achieve"let me define the business object and
then have the container worry about how to persist it." The problem with CMPs ended up
being twofold:

 Rather than dealing with a simple POJO, you were forced to create and maintain a
complicated variety of interdependent classes and interfacesRemotes, RemoteHomes,
Locals, LocalHomes, and abstract bean classes.

 The resulting tangle of code was tightly coupled to the container and very intrusiveyou
were forced to inherit from EJBObject and implement specific interfaces rather than
following an inheritance tree that more closely modeled your business domain.

While Entity Beans still exist in the EJB specification today, they have largely fallen out of
favor in the developer community.

Sun's next attempt at a JavaBean-centric persistence API was Java Data Objects(JDO). The
1.0 specification has been out for several years, but it hasn't captured a lot of mindshare.
Some point to a differently but equally complicated API as its main problem. Traditional RDBMS
vendors have been slow to support it, although OODBMS vendors have enthusiastically touted
it as the Next Big Thing. Regardless, JDO is not an official part of the J2EE specification, so it
has gone largely unnoticed by the server-side crowd.

Which leads us to the wild west of independent ORMs. Many solutionsboth commercial and
open sourcehave popped up in the absence of an official specification from Sun. All allow you
to traffic in unencumbered POJOsyou don't have to inherit from a specific object or implement
a specific interface. Some use runtime reflection, and others rely on post-compilation
bytecode manipulation to achieve their unobtrusive persistence goals.

JBoss Hibernate is one of the most popular of the bunch, although there are at least half a
dozen viable candidates in this category. After we outline a JDBC strategy in this chapter,
we'll walk through a simple Hibernate refactoring in the next chapter.

The existence of so many competing persistence solutions demonstrates that this is a complex
problem with no one right answer. Any solution you pick will certainly outshine the others in
certain circumstances and leave you wanting in others.

Apart from the obvious JBoss tie-in, there is one compelling reason why we chose Hibernate
as our second persistence strategy, over any of the others we mentioned. Quite simply, it
seems to best represent what next generation persistence APIs will look like.

In 2005, Sun announced the merger of the EJB 3.0 and JDO 2.0 specification teams. Both
were working towardyou guessed itJavaBean-centric persistence APIs. Sun also invited the
lead architects from the Hibernate project to sit on the team. Whatever the final name of the
specification turns out to be, one thing is certainit will look and feel like Hibernate or any of
the many other ORMs on the market today. By investing a little time in learning an ORM today,
you will be that much closer to understanding the official Sun specification when it is released
in the future.

But before you can really appreciate what an ORM brings to the table, let's look at a how to
solve the persistence problem using nothing but JDBC.

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.2. JDBC
JDBC has been around nearly as long as Java itself. The JDBC 1.0 API was released with JDK
1.1. This is the java.sql package. JDBC 2.0 was released with JDK 1.2. It included both the
Core package and what was called the Optional Package (javax.sql). The optional package
brought with it better enterprise support for database connections, including connection pools
and distributed transactions. JDBC 3.0 is the latest release, included with JDK 1.4.

If you've written JDBC code since the good old days, you're probably familiar with using the
DriverManager to get a database connection, as in Example 4-1.

Example 4-1. Example of the JDBC DriverManager

 static final String DB_DRIVER_CLASS = "com.mysql.jdbc.Driver";

 static final String DB_URL =

 "mysql://localhost:3306/JBossatWorkDB?autoReconnect=true";

 Connection connection = null;

 try {

 // Load the Driver.

 Class.forName(DB_DRIVER_CLASS).newInstance();

 // Connect to the database.

 connection = DriverManager.getConnection(DB_URL);

 } catch (SQLException se) {

 ...

 } catch (...) {

 ...

 }

While this code certainly works, it has several shortcomings:

 Every time you connect and disconnect from the database, you incur the overhead of
creating and destroying a physical database connection.

 You have to manage the database transaction yourself.

 You have a local transaction that's concerned only with database activity. What if you
deal with other resources such as JMS Destinations (Queues and Topics)? If there's a
problem and you need to roll back database updates, there's no automated way to roll
back the work done with these other resources.

One of the main benefits of living in an application server is having the server take care of
these sorts of plumbing issues. JBoss, like all other J2EE application servers, deals with the
issues listed above on your behalf. However, to facilitate this, we need to slightly change the
way you obtain your database connections.

Rather than using a java.sql.DriverManager, we need to use a javax.sql.DataSource to allow
JBoss to manage the details in Example 4-2.

Example 4-2. Example of the JDBC DataSource

 static final String DATA_SOURCE=

 "java:comp/env/jdbc/JBossAtWorkDS";

 DataSource

 dataSource = null;

 Connection conn = null;

 try {

 // Load the Driver.

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 // Connect to the database.

 conn = dataSource.getConnection();

 } catch (SQLException se) {

 ...

 } catch (ServiceLocatorException sle) {

 ...

 }

A DataSource provides the following advantages:

 When you obtain a database connection using a DataSource, you're not creating a
new connection. At startup, JBoss creates a database Connection Pool managed by a
DataSource. When you get a database connection from a DataSource, you access an
already existing connection from the pool. When you "close" the connection, you just
return it to the pool so someone else can use it.

 When you use a Container-Managed DataSource, all database access for a particular
Transaction Context commits or rolls back automatically. You don't have to manage
the transaction yourself anymore.

 If you use Container-Managed Transactions (CMT) and your DBMS supports two-phase
commit (the XA protocol), then your database transaction can participate in a global
transaction. Suppose you have a unit of work that requires database activity and
sends JMS messages: if something goes wrong, the JBoss Transaction Manager rolls
back everything.

OK, we admit it. We pulled a bit of a fast one on you. Using DataSources brings great power to
the table, but it also brings along some added complexity. We should look at a few more
moving parts in greater detail.

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.3. JNDI
Let's take a moment to parse the DataSource name java:comp/env/jdbc/JBossAtWorkDS, which is
a Java Naming and Directory Interface (JNDI) name. JNDI provides access to a variety of
back-end resources in a unified way.

JNDI is to Java Enterprise applications what Domain Name Service (DNS) is to Internet
applications. Without DNS, you would be forced to memorize and type IP addresses like
192.168.1.100 into your web browser instead of friendly names like
http://www.jbossatwork.com. In addition to resolving host names to IP addresses, DNS
facilitates sending email between domains, load-balancing web servers, and other things.
Similarly, JNDI maps high-level names to resources like database connections, JavaMail
sessions, and pools of EJB objects.

DNS has a naming convention that makes it easy to figure out the organizational structure of
a Fully Qualified Domain Name (FQDN). Domain names are dot-delimited and move from the
general to the specific as you read them from right-to-left. "com" is a Top-Level Domain (TLD)
reserved for commercial businesses. There are a number of other TLDs, including "edu" for
educational institutions, "gov" for government entities, and "org" for non-profit organizations.

The domain name reserved for your business or organization is called a Mid-Level Domain
(MLD). Jbossatwork.com, apache.org, and whitehouse.gov are all MLDs. You can create any
number of subdomains under a MLD, but the left-most element will always be a HostName like
"www" or "mail."

Now looking at a domain name like http://www.parks.state.co.us or
http://www.npgc.state.ne.us for a listing of state parks in Colorado or Nebraska begins to
make a little more sense. The country/state/department hierarchy in the domain name mirrors
the real-life organizational hierarchy.

JNDI organizes its namespace using a naming convention called Environmental Naming Context
(ENC). You are not required to use this naming convention, but it is highly recommended. ENC
JNDI names always begin with java:comp/env. (Notice that JNDI names are forward
slash-delimited instead of dot-delimited and read left-to-right.)

A number of TLD-like top-level names are in the ENC. Each JNDI "TLD" corresponds to a
specific resource type, shown in Table 4-1.

Table 4-1. J2EE-style JNDI ENC naming conventions

Resource type JNDI prefix

Environment Variables java:comp/env/var

URL java:comp/env/url

JavaMail Sessions java:comp/env/mail

JMS Connection Factories and Destinations java:comp/env/jms

EJB Homes java:comp/env/ejb

JDBC DataSources java:comp/env/jdbc

I'm obviously mixing my JNDI and DNS nomenclature, but the JNDI "TLD" for DataSources always
should be java:/comp/env/jdbc. In the example DataSource name
java:comp/env/jdbc/JBossAtWorkDSthe "TLD" and "MLD" should be more self-evident now.
JBossAtWorkDS is the JNDI "MLD."

DNS names protect us from the perils of hardcoded IP addresses. A change of server or ISP
(and the corresponding change in IP address) should remain transparent to the casual end
user since their handle to your site is unchanged. Similarly, JNDI gives J2EE components a
handle to back-end resources. Since the component uses an alias instead of an actual value
(for the database driver, for example) we now have the flexibility to swap out back-end
resources without changing the source code.

These JNDI names are local to the EAR. If you deploy multiple EARs to the same JBoss
instance, each EAR will get its own JNDI local context. This ensures that your JNDI names are
available only to the EAR in which they are set.

In the spirit of encapsulation, we wrap all of the JNDI lookups in class called ServiceLocator. It
allows us to constrain all of the JNDI semantics to a single class. Here's what our
ServiceLocator class looks like in Example 4-3.

Example 4-3. ServiceLocator.java

package com.jbossatwork.util;

import javax.naming.*;

import javax.sql.*;

public class ServiceLocator {

 private ServiceLocator() { }

 public static DataSource getDataSource(String dataSourceJndiName)

 throws ServiceLocatorException {

 DataSource dataSource = null;

 try {

 Context ctx = new InitialContext();

 dataSource = (DataSource) ctx.lookup(dataSourceJndiName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return dataSource;

 }

}

All JNDI variables are stored in the InitialContext. When you call the lookup() method, it
returns an Object that must be cast to the appropriate type. If you think about it, this is
really no different than calling HashMap.get("JBossAtWorkDS").

Now we can see how to get a DataSource by doing a JNDI lookup. But this probably brings up
the next obvious question: how did our DataSource get into the InitialContext in the first
place? To find out, we need to revisit your favorite deployment descriptor, web.xml.

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://192.168.1.100
http://www.jbossatwork.com
http://Jbossatwork.com
http://apache.org
http://whitehouse.gov
http://www.parks.state.co.us
http://www.npgc.state.ne.us
http://www.jbossatwork.com
http://www.parks.state.co.us
http://www.npgc.state.ne.us
http://www.processtext.com/abcchm.html

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.4. JNDI References in web.xml
In previous chapters, we used the web.xml file to describe and deploy servlets. This same file
describes and deploys JNDI resources. The new web.xml looks like Example 4-4.

Example 4-4. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>/controller/*</url-pattern>

 </servlet-mapping>

 <resource-ref>

 <res-ref-name>jdbc/JBossAtWorkDS</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</web-app>

Let's examine each new element:

 <res-ref-name> is the JNDI resource name. Notice that you don't have to specify
"java:comp/env/"it is assumed, just like "http://" is commonly left out of web URLs.

 <res-type> in our case is a DataSource. This must be the fully qualified classname.

 <res-auth> can be either Container or Servlet. Since we use JBoss' DataSource
pooling, Container is the appropriate choice here.

OK, so here's where it gets interesting. At first glance, it appears that JBoss doesn't adhere to
the ENC naming style when it comes to DataSources. Instead of
java:comp/env/jdbc/JBossAtWorkDS, its DataSources are referenced as simply
java:/JBossAtWorkDS. So we need a way to map the JBoss name to the ENC name.

The real reason for the mismatch is that JBoss creates a global binding for the DataSource, and
we need to create a local reference to it. We mentioned earlier in the chapter that all JNDI
references are local to the EAR. Out of courtesy, JBoss doesn't automatically expose global
references to us. We need to map the global name to a local name so that we can work with
it.

Luckily, a straightforward way to do the cross mapping is available. You can include a JBoss
specific deployment descriptor in your WAR named jboss-web.xml. Example 4-5 shows what
ours should look like.

Example 4-5. jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<jboss-web>

 <resource-ref>

 <res-ref-name>jdbc/JBossAtWorkDS</res-ref-name>

 <jndi-name>java:/JBossAtWorkDS </jndi-name>

 </resource-ref>

</jboss-web>

Since we're already using XDoclet to generate our web.xml file, there is no reason not to
continue letting it do its thing. Example 4-6 shows the new XDoclet code in ControllerServlet
.

Example 4-6. ControllerServlet.java

/**

 * @web.servlet

 * name="Controller"

 *

 * @web.servlet-mapping

 * url-pattern="/controller/*"

 *

 * @web.resource-ref

 * name="jdbc/JBossAtWorkDS"

 * type="javax.sql.DataSource"

 * auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="jdbc/JBossAtWorkDS"

 * jndi-name="java:/JBossAtWorkDS"

 */

public class ControllerServlet extends HttpServlet

Chances are good that more than one servlet will end up using the same JNDI resource. While
the servlet tags need to be defined in each servlet, the JNDI tags should be specified only
once. It doesn't matter which servlet you define them in, but you should come up with a
strategy early in the development process for managing it. If you have a central Controller
servlet like we do, it is usually a pretty logical candidate for this. (You can also have XDoclet
include an XML fragment stored in a file instead of using JavaDoc comments. The choice is
yours.)

To generate the jboss-web.xml file, we need to add a new XDoclet directive to our build
process in Example 4-7aptly named <jbosswebxml>.

Example 4-7. Adding the <jbosswebxml> directive

<!-- ====================================== -->

 <target name="generate-web" description="Generate web.xml">

 <taskdef name="webdoclet"

 classname="xdoclet.modules.web.WebDocletTask"

 classpathref="xdoclet.lib.path" />

 <mkdir dir="${gen.source.dir}" />

 <webdoclet destdir="${gen.source.dir}">

 <fileset dir="${source.dir}">

 <include name="**/*Servlet.java" />

 </fileset>

 <deploymentdescriptor destdir="${gen.source.dir}"

 distributable="false"

 servletspec="2.4" />

 <jbosswebxml destdir="${gen.source.dir}" />

 </webdoclet>

 </target>

We'll also need to change your <war> task in Example 4-8 to include the newly generated
JBoss-specific deployment descriptor.

Example 4-8. Including jboss-web.xml in the WAR

<!-- ====================================== -->

 <target name="war" depends="generate-web,compile"

 description="Packages the Web files into a WAR file">

 <mkdir dir="${distribution.dir}" />

 <war destFile="${distribution.dir}/${war.name}"

 webxml="${gen.source.dir}/web.xml">

 <!-- files to be included in / -->

 <fileset dir="${web.dir}" exclude="WEB-INF/web.xml" />

 <!-- files to be included in /WEB-INF/classes -->

 <classes dir="${classes.dir}" />

 <!-- files to be included in /WEB-INF/lib -->

 <lib dir="${lib.dir}" />

 <!-- files to be included in /WEB-INF -->

 <webinf dir="${web.inf.dir}" excludes="web.xml" />

 <webinf dir="${gen.source.dir}" >

 <include name="jboss-web.xml" />

 </webinf>

 </war>

 </target>

OK, so now we know that the JNDI resources are defined in the deployment descriptors . But
where do we configure the DataSource itself?

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://
http://
http://www.processtext.com/abcchm.html

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.5. JBoss DataSource Descriptors
Remember in Chapter 1 we dynamically deployed and undeployed a service? We used the
Hypersonic database in the example. You can access any database as an MBean by simply
including the appropriate *-ds.xml file in the deploy directory.

Hypersonic is completely implemented in Java and ships standard with JBoss. It is great for
playing around with JDBC and not having to worry about installing and configuring an external
database. We generally rely on a full-fledged external database for production applications,
but we'd be lying if we told you that we didn't use Hypersonic all the time for rapid testing
and prototyping.

Three types of Hypersonic instances include:

 The default Hypersonic configuration, which gives you a local database whose
modifications are saved to disk (and therefore survive between JBoss restarts). We
can access this configuration only through a DataSourceit is not accessible to
out-of-container clients like Ant or third-party standalone GUIs. It is called an
"In-Process Persistent DB".

 As a slight variation, we can configure the "In-Process Persistent DB" to run purely in
memory. No files are written to disk, and therefore the database lives only as long as
the container is running. This is called an "In-Memory DB."

 If you need to access the database from either a DataSource or an external client, you
can configure Hypersonic to listen on a TCP port (1701 by default). This is called a
"TCP DB."

The Hypersonic deployment descriptor is $JBOSS_HOME/server/default/deploy/hsqldb-ds.xml.
Examples of deployment descriptors for all major databases (commercial or open source) are
at $JBOSS_HOME/docs/examples/jca. The J2EE Connector Architecture (JCA) is a standard
way for a J2EE container to connect to external datastores. These example files generally are
very well commented. Take a moment to browse the examples/jca directory and look through
some of the deployment descriptors.

We provide two customized Hypersonic database descriptors in the ch04/sql directory.
Jaw-ds.xml strips out all the comments included in the original hsqldb-ds.xml filesometimes it
can be hard to see the forest for the trees. We also included a version that retains the
original comments. You might like to compare this version to the default Hypersonic version to
see how we've tweaked it.

Let's step through jaw-ds.xml line by line.

<datasources>

 <local-tx-datasource>

 <jndi-name>JBossAtWorkDS</jndi-name>

This is the global/JBoss JNDI name of your DataSource. Since this DataSource is accessible to all
EARs, it only makes sense to bind its name in the global context. (The local ENC name goes
with the local EAR in web.xml.)

 <connection-url>jdbc:hsqldb:hsql://localhost:1701</connection-url>

 <driver-class>org.hsqldb.jdbcDriver</driver-class>

 <user-name>sa</user-name>

 <password></password>

These values should look familiar to you. They are the standard JDBC parameters that tell you
how to connect to the database, which driver to use, and what credentials to supply when
connecting.

 <min-pool-size>5</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <idle-timeout-minutes>0</idle-timeout-minutes>

 <track-statements/>

These next settings allow you to optimize the start and peak number of connections in the
pool. According to the comments in the default Hypersonic descriptor, <idle-timeout-minutes>
should be left at 0 as a bug work-around.

 <metadata>

 <type-mapping>Hypersonic SQL</type-mapping>

 </metadata>

 <depends>jboss:service=Hypersonic-JAW,database=jawdb</depends>

 </local-tx-datasource>

The <metadata> element is boilerplate for all Hypersonic instances, but the <depends> clause
should be customized per instance. This is the unique identifier of the MBean defined in the
last section of the file.

 <mbean code="org.jboss.jdbc.HypersonicDatabase"

 name="jboss:service=Hypersonic-JAW,database=jawdb">

 <attribute name="Port">1701</attribute>

 <attribute name="Silent">true</attribute>

 <attribute name="Database">jawdb</attribute>

 <attribute name="Trace">false</attribute>

 <attribute name="No_system_exit">true</attribute>

 </mbean>

</datasources>

The <local-tx-datasource> section defines the DataSource. The <mbean> section defines the
actual database instance. The Database attribute is especially interestingit tells Hypersonic
what to name the physical files stored on disk. (These files are stored in
$JBOSS_HOME/server/default/data/hypersonic, but they won't show up until you deploy the
database. We'll see them in just a moment.)

Now we are ready to deploy the customized JAW datasource. Copy jaw-ds.xml to
$JBOSS_HOME/server/default/deploy. You should see the following code in your server console
window:

23:06:52,077 INFO [STDOUT] [Server@d27151]:

[Thread[hypersonic-jawdb,5,jboss]]:

 checkRunning(false) entered

23:06:52,079 INFO [STDOUT] [Server@d27151]:

[Thread[hypersonic-jawdb,5,jboss]]:

 checkRunning(false) exited

23:06:52,080 INFO [STDOUT] [Server@d27151]: Startup sequence initiated from

main()

 method

23:06:52,119 INFO [STDOUT] [Server@d27151]: Loaded properties from

 [/Library/jboss-4.0.1/bin/server.properties]

23:06:52,155 INFO [STDOUT] [Server@d27151]: Initiating startup sequence...

23:06:52,158 INFO [STDOUT] [Server@d27151]: Server socket opened successfully

in

 0 ms.

23:06:52,179 INFO [STDOUT] [Server@d27151]: Database [index=0, id=2,

 db=file:/Library/jboss-4.0.1/server/default/data/hypersonic/jawdb, alias=]

 opened sucessfully in 18 ms.

23:06:52,181 INFO [STDOUT] [Server@d27151]: Startup sequence completed in 23

ms.

23:06:52,263 INFO [STDOUT] [Server@d27151]: 2005-04-28 23:06:52.263 HSQLDB

server

 1.7.2 is online

23:06:52,288 INFO [STDOUT] [Server@d27151]: To close normally, connect and

execute

 SHUTDOWN SQL

23:06:52,309 INFO [STDOUT] [Server@d27151]: From command line, use [Ctrl]+[C]

to

 abort abruptly

23:06:52,569 INFO [WrapperDataSourceService] Bound connection factory for

resource

 adapter for ConnectionManager 'jboss.jca:name=JBossAtWorkDS,

 service=DataSourceBinding to JNDI name 'java:JBossAtWorkDS'

We can glean a couple of interesting nuggets from the console output:

 First, it tells us that the database is now listening on a TCP port (or server socket).

 It also tells us where to look for the physical database files:
$JBOSS_HOME/server/default/data/hypersonic. After we add some data to this
database, we'll nose around this directory to see the resulting changes.

 Finally, it tells us that our DataSource has been successfully bound to a JNDI name.

We now know that our database has been successfully deployed. We can use a couple of
other tricks to confirm this if you'd like.

You can verify the ports that are open on your server by using the netstat command. Type
netstat -an on a Windows PC or Mac; or netstat -anp on a Linux box. All platforms should give
you a report similar to this:

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp46 0 0 *.1701 *.* LISTEN

tcp4 0 0 127.0.0.1.57918 127.0.0.1.631 CLOSE_WAIT

tcp4 0 0 127.0.0.1.57917 127.0.0.1.631 CLOSE_WAIT

tcp46 0 0 *.8008 *.* LISTEN

tcp46 0 0 *.8093 *.* LISTEN

tcp46 0 0 *.8088 *.* LISTEN

tcp46 0 0 *.4445 *.* LISTEN

tcp46 0 0 *.4444 *.* LISTEN

tcp46 0 0 *.8083 *.* LISTEN

tcp46 0 0 *.1099 *.* LISTEN

tcp46 0 0 *.1098 *.* LISTEN

tcp4 0 0 10.11.46.54.56015 207.178.165.2.80 CLOSE_WAIT

tcp4 0 0 127.0.0.1.8005 *.* LISTEN

tcp46 0 0 *.8009 *.* LISTEN

tcp46 0 0 *.8080 *.* LISTEN

In addition to our Hypersonic instance on port 1701, we can also see our embedded Tomcat
instance listening on port 8080.

Since Hypersonic is an MBean, you can also use JBoss' JMX-Console webapp to verify that it is
active. Visit http://localhost:8080/jmx-console (Figure 4-1). The Hypersonic-JAW MBean
should be one of the first links in the list.

Click on the link to our database instance. From here, you can do basic things like start and
stop the instance, or modify the port it is listening on. This is nothing you can't also do by
hand-editing the configuration files, but some people prefer a GUI like that in Figure 4-2.

Now our database is configured and ready to be tested. To hit it, we'll need to make sure that
your application can find the appropriate JDBC driver.

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console
http://www.processtext.com/abcchm.html

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.6. JDBC Driver JARs
A DataSource is a container-managed resource. The JBoss documentation recommends storing
the JAR outside of your EAR and in $JBOSS_HOME/server/default/lib. (One big reason for this
is that JDBC drivers cannot be hot deployed.) For example, the
$JBOSS_HOME/server/default/lib directory is where you'll find hsqldb.jarthe JDBC driver for the
Hypersonic database. As an added benefit, if you store the drivers here, you can share them
across multiple EARs. With less duplication, there is less of a chance for mismatched drivers
and database versions.

Figure 4-1. The JBoss JMX-Console

Figure 4-2. MBean configuration

Of course, if you are not going to be hot deploying your EARs you can include your JDBC
drivers in your EAR. This gives you the added benefit of allowing each EAR to use potentially
different or conflicting versions of the same JDBC driver.

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.7. Database Checklist
OK, so here's the checklist of things we've accomplished so far:

 Stored the JDBC driver in $JBOSS_HOME/server/default/lib (hsqldb.jar)

 Configured the database deployment descriptor in $JBOSS_HOME/server/default/deploy
(hsqldb-ds.xml) Among other things, this is where we set up the JBoss JNDI name (
java:/JBossAtWorkDS).

 We created a global JNDI reference to the DataSource in jboss-web.xml. This name
matches the name in the database deployment descriptor. We also provided a setting
that maps the global JNDI name to a local JNDI name using ENC-style naming (
java:comp/env/jdbc/JBossAtWorkDS).

 We created a local JNDI reference to the DataStore in web.xml..

 We created a ServiceLocator class that encapsulates our JNDI lookup and returns the
DataSource.

Because of the way we've set things up, switching databases at this point is relatively easy.
For example, if you'd prefer to work against an instance of MySQL, we only need to copy the
JDBC drivers to the $JBOSS_HOME/server/default/lib directory and copy a new database
deployment descriptor into the deploy directory. If you use the same JNDI name that we
already used, your job is doneall the code upstream will be configured and ready to hit the
new database.

We've said it many times before, but it's worth saying again: Hypersonic is a great database
for our immediate purposes because it doesn't require configuring an external resource.
However, in a production environment, we'd most likely use a more robust database.

We are now ready to create a Car table and insert some sample data.

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.8. Accessing the Database Using Ant
Now that we've created the JBossAtWorkDB database instance, we need to create and
populate the Car table. Ant has a <sql> task that is ideal for this sort of thing. Keeping these
commands in a script allows you to rebuild your database easily and often during the
development phase.

The same rules for scripting the deployment of your EAR to a production server apply here as
well: Just Say NO! If you create a script that points to a production database, you are only
asking for it to be run inadvertently with disastrous results. With great power comes great
responsibilityuse it wisely.

That said, let's look at the build.xml file in the new SQL subproject, shown in Example 4-9. This
project doesn't contain any compiled code. It is just a convenient storage location for these
SQL scripts.

Example 4-9. SQL subproject build.xml

<?xml version="1.0"?>

<project name="sql" default="init" basedir=".">

 <!-- Initialization variables -->

 <property name="database.driver.dir"

 value="${env.JBOSS_HOME}/server/default/lib/"/>

 <property name="database.driver.jar" value="hsqldb.jar"/>

 <path id="sql.classpath">

 <fileset dir="${database.driver.dir}">

 <include name="${database.driver.jar}"/>

 </fileset>

 </path>

 <!-- ====================================== -->

 <target name="init"

 description="Creates test data in the database.">

 <sql driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost:1701"

 userid="sa"

 password=""

 print="yes"

 classpathref="sql.classpath">

 DROP TABLE IF EXISTS CAR;

 CREATE TABLE CAR (

 ID BIGINT identity,

 MAKE VARCHAR(50),

 MODEL VARCHAR(50),

 MODEL_YEAR VARCHAR(50)

);

 INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR)

 VALUES (99, 'Toyota', 'Camry', '2005');

 INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR)

 VALUES (100, 'Toyota', 'Corolla', '1999');

 INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR)

 VALUES (101, 'Ford', 'Explorer', '2005');

 SELECT * FROM CAR;

 </sql>

 </target>

</project>

We provide a classpath to your database driver and set up the connection string. From there,
it is straight SQL. Run the script: you should see something like Example 4-10 for console
output.

Example 4-10. Ant SQL output

Buildfile: build.xml

init:

 [sql] Executing commands

 [sql] 0 rows affected

 [sql] 0 rows affected

 [sql] 1 rows affected

 [sql] 1 rows affected

 [sql] 1 rows affected

 [sql] ID,MAKE,MODEL,MODEL_YEAR

 [sql] 99,Toyota,Camry,2005

 [sql] 100,Toyota,Corolla,1999

 [sql] 101,Ford,Explorer,2005

 [sql] 0 rows affected

 [sql] 6 of 6 SQL statements executed successfully

BUILD SUCCESSFUL

Total time: 3 seconds

If you really want to prove to yourself that this worked, look in
$JBOSS_HOME/server/default/data/hypersonic one more time. If you open the jaw-db.log file
in a text editor, you should see the following:

/*C1*/CONNECT USER SA

SET AUTOCOMMIT FALSE

 DROP TABLE IF EXISTS CAR

 CREATE TABLE CAR (ID BIGINT, MAKE VARCHAR(50), MODEL VARCHAR(50),

 MODEL_YEAR VARCHAR(50))

INSERT INTO CAR VALUES(99,'Toyota','Camry','2005')

INSERT INTO CAR VALUES(100,'Toyota','Corolla','1999')

INSERT INTO CAR VALUES(101,'Ford','Explorer','2005')

COMMIT

DISCONNECT

At this point, the stage is set. We have a database table with data in it. All we need to do
now is create a new DAO object that will read the information out of the table.

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.9. Creating JDBCCarDAO
Our first CarDAO was fine to get the project kick-started, but ArrayLists aren't the best
long-term persistence strategy. Let's create a second DAO that takes advantage of the
infrastructure we've just put in place.

Since two classes provide different implementations of the same functionality, we should
create a common Interface. In addition to making it trivial to switch back and forth between
the two concrete implementations, it will also pave the way for us to add a third DAO
implementation for Hibernate in the next chapter.

In the ch04/common source tree, notice that we renamed our old DAO class to
InMemoryCarDAO. We didn't touch any of the methods, just the name of the class and the
corresponding constructor names, as in Example 4-11.

Example 4-11. CarDAO.java

package com.jbossatwork.dao;

import java.util.*;

import com.jbossatwork.dto.CarDTO;

public class InMemoryCarDAO implements CarDAO

{
 private List carList;

 public InMemoryCarDAO()

 {

 carList = new ArrayList();

 carList.add(new CarDTO("Toyota", "Camry", "2005"));

 carList.add(new CarDTO("Toyota", "Corolla", "1999"));

 carList.add(new CarDTO("Ford", "Explorer", "2005"));

 }

 public List findAll()

 {

 return carList;

 }

 }

The CarDAO Interface simply defines the method signature for findAll():

package com.jbossatwork.dao;

import java.util.*;

public interface CarDAO

{

 public List findAll();

}

The new JDBCCarDAO uses the new DataSource and ServiceLocator class to build the ArrayList
of CarDTOs in Example 4-12.

Example 4-12. JDBCCarDAO.java

package com.jbossatwork.dao;

import java.util.*;

import java.sql.*;

import javax.sql.*;

import com.jbossatwork.dto.CarDTO;

import com.jbossatwork.util.*;

public class JDBCCarDAO implements CarDAO

{

 private List carList;

 private static final String

DATA_SOURCE="java:comp/env/jdbc/JBossAtWorkDS";

 public JDBCCarDAO()

 { }

 public List findAll()

 {

 List carList = new ArrayList();

 DataSource dataSource = null;

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try

 {

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 conn = dataSource.getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery("select * from CAR");

 while(rs.next())

 {

 CarDTO car = new CarDTO();

 car.setMake(rs.getString("MAKE"));

 car.setModel(rs.getString("MODEL"));

 car.setModelYear(rs.getString("MODEL_YEAR"));

 carList.add(car);

 }

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if(rs != null){rs.close();}

 if(stmt != null){stmt.close();}

 if(conn != null){conn.close();}

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 return carList;

 }

 }

Finally let's change ControllerServlet to instantiate the correct DAO. Notice that courtesy of
the new interface we created, switching between implementations is as simple as changing
the "new" side of the equation, as shown in Example 4-13.

Example 4-13. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new JDBCCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

Now that everything is in place, let's compile and deploy the EAR. Change to
ch04/04a-datasource and type ant. Copy the jaw.ear file to
$JBOSS_HOME/server/default/deploy and visit http://localhost:8080/jaw. (Alternately, you
can use the deploy or colddeploy Ant targets.)

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.10. Looking Ahead...
Once again, we added hundreds of lines of new code with no visible difference to the
application. Hopefully you can appreciate what is transparent to the end userby layering your
application correctly, you can make massive changes to the persistence tier while leaving your
presentation tier virtually untouched.

We have one more iteration of the CarList example to get through before we move on to more
exciting stuff. In the next chapter, we'll create a Hibernate DAO that drastically simplifies the
object-relational mapping that we have to do by hand in the JDBC DAO. After that, we'll start
adding some new functionality to the application, such as logging in and buying cars.

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 5. Hibernate and JBoss
Hibernate is not an official part of the J2EE specification. It is an Object/Relational Mapper
that hides the complexity of marshalling and unmarshalling JavaBeans and ResultSets.

Hibernate is unique because it can run either in a J2EE container such as JBoss, or as a
standalone service. JBoss 4.0.2 ships standard with Hibernate 3.0.2. This chapter focuses on
integrating the two to streamline the persistence tier of your application. (For a more detailed
look at installing and running Hibernate, see Hibernate: A Developer's Notebook by James
Elliott (O'Reilly).)

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.1. The Pros and Cons of ORMs
"Object/Relational mapping is the Vietnam of computer science..."Ted Neward (author,
Effective Enterprise Java (Addison-Wesley))

If you've read Neward's work or heard him speak, you know that he is a smart, controversial,
and very passionate technologist. We couldn't think of a better sentiment to begin our
chapter on ORMs.

His point is that the United States started in Vietnam by sending over a few advisors. Then
we began to ship in limited numbers of ground troops. Before too long, things degenerated into
a full-blown, messy, unpopular war where we were heavily committed and had a difficult time
extricating ourselves.

Working with ORMs (in his mind) is really no different. You start out with simple objects that
map neatly to single rows. Then you get brave and begin using composition (classes within
classes). Hibernate is smart enough to handle that, but at some point you are going to come
up with either a complicated object model or a highly normalized relational database that
doesn't map nicely through Hibernate.

Our recommendation is to tread lightly. ORMs like Hibernate are relatively new in the Java
world. The related specifications are moving quickly and have yet to really solidify. The degree
of mission criticality of your application should be inversely related to the novelty of the
technology you choose to implement.

On the other hand, we feel reasonably confident betting on this horse. Hibernate is not
currently a J2EE specificationit is a third-party ORM. But as mentioned in the previous
chapter, Sun merged the EJB3 and JDO2 specification teams and invited the lead architects of
Hibernate to sit on the team as well. It's a safe bet that this future specification, whatever it
ends up being called, will bear more than a passing resemblance to Hibernate.

The examples in this chapter were designed to show Hibernate in the best possible light. Keep
in mind, though, that the object model is simple and maps neatly to a single database table.
We purposely show you the JDBC solution alongside the Hibernate solution to illustrate the
fact that they both are viable options.

Bottom line: use common sense. Start with simple objects and see how it goes. You might be
able to use Hibernate throughout your application without a hitch. Or you might bump up
against a limitation early in the process. Only you can decide how Hibernate fits best into your
development strategy.

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.2. Hibernate Mapping Files
At the core of Hibernate is the HBM mapping file. This XML file maps your object members to
fields in a database table. Some might argue that the clever use of reflection could eliminate
the need for this file by simply automatically mapping table fieldnames to class fields. While
this is appealing, you might not have complete editorial control over the tables or the classes.
By using a file, you have the flexibility to map any table field to any class field, regardless of
the name.

Recall that our CarDTO has four fields: id, make, model, and modelYear. See how the
car.hbm.xml file maps these fields to the Car table in Example 5-1.

Example 5-1. car.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

 <class

 name="com.jbossatwork.dto.CarDTO"

 table="CAR" >

 <id

 name="id"

 column="ID"

 type="int" >

 <generator class="native" />

 </id>

 <property

 name="make"

 type="java.lang.String"

 column="MAKE" />

 <property

 name="model"

 type="java.lang.String"

 column="MODEL" />

 <property

 name="modelYear"

 type="java.lang.String"

 column="MODEL_YEAR" />

 </class>

</hibernate-mapping>

 The <class> element matches POJO to table. It is possible to map a single POJO to
multiple tables and vice versa, but we'll stick with the simple use case for this example.

 The <id> element identifies the Primary-Key/Unique Identifier field. The <generator>
element tells Hibernate how the PK is created. "Native" tells hibernate to rely on the
underlying database to generate the key. There are many different types of
generators: "assigned" allows the program to specify the unique value. Use this when
the PK has a specific meaning, such as a phone or social security number. Another
common generator type is "increment," which lets Hibernate generate its own sequence
number. (Recall that you set up an auto-incrementing Primary Key field in Hypersonic
by using the "identity" keyword: "CREATE TABLE CAR (ID BIGINT identity, MAKE
VARCHAR(50)...);")

 Finally, we see a number of <property> elements, each mapping a class field to a table
column.

These mapping files are intentionally simple enough to hand edit and maintain, but as you
might have guessed, XDoclet allows us to automate this task by adding comments to your
POJO. In the common subproject, look at your newly annotated CarDTO in Example 5-2.

Example 5-2. CarDTO.java with Hibernate/XDoclet annotations

package com.jbossatwork.dto;

/**

 * @hibernate.class

 * table="CAR"

 */

public class CarDTO

{

 private int id;

 private String make;

 private String model;

 private String modelYear;

...

 /**

 * @hibernate.id

 * generator-class="native"

 * column="ID"

 */

 public int getId()

 {

 return id;

 }

...

 /**

 * @hibernate.property

 * column="MAKE"

 */

 public String getMake()

 {

 return make;

 }

...

 /**

 * @hibernate.property

 * column="MODEL"

 */

 public String getModel()

 {

 return model;

 }

...

 /**

 * @hibernate.property

 * column="MODEL_YEAR"

 */

 public String getModelYear()

 {

 return modelYear;

 }

}

Can you see the relationship between the XDoclet tags and the HBM file?

Now all we need is an Ant task to create the HBM file in Example 5-3.

Example 5-3. build.xml

<!-- ====================================== -->

 <target name="generate-hbm" description="Generate Hibernate hbm.xml file">

 <taskdef name="hibernatedoclet"

 classname="xdoclet.modules.hibernate.HibernateDocletTask"

 classpathref="xdoclet.lib.path" />

 <mkdir dir="${gen.source.dir}" />

 <hibernatedoclet destdir="${gen.source.dir}">

 <fileset dir="${source.dir}">

 <include name="**/*DTO.java" />

 </fileset>

 <hibernate version="3.0" />

 </hibernatedoclet>

 </target>

Not surprisingly, the <hibernatedoclet> tag looks remarkably like the <webdoclet> tag we
learned about in the web chapter. It specifies a destination directory for the generated file.
The <fileset> limits it only to files that end with DTO. Finally, the <hibernate> tag generates a
3.0 compatible HBM file.

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.3. Hibernate MBean Service Descriptor
Now that we have the HBM file in place, we must create an MBean service configuration file
for Hibernate. Hibernate is a service, no different than Hypersonic or any of the others. Each
MBean needs a service configuration file like Example 5-4 so that JBoss will recognize it and
run it on startup.

Example 5-4. hibernate-service.xml

<server>

 <mbean code="org.jboss.hibernate.jmx.Hibernate"

 name="jboss.har:service=Hibernate">

 <attribute name="DatasourceName">java:/JBossAtWorkDS</attribute>

 <attribute name="Dialect">

org.hibernate.dialect.HSQLDialect</attribute>

 <attribute name="SessionFactoryName">

 java:/hibernate/SessionFactory</attribute>

 <attribute name="CacheProviderClass">

 org.hibernate.cache.HashtableCacheProvider

 </attribute>

 </mbean>

</server>

Let's step through it line by line.

 The <mbean> element names the service and specifies the implementing class.

 The <attribute name="DatasourceName"> element is a link to your Hypersonic
datasource using the global JNDI name.

 The <attribute name="Dialect"> element tells Hibernate which type of database it talks
to. As much as we'd like to believe the "s" in SQL stands for "standard," the acronym is
short for "Structured Query Language." Each database vendor's implementation of SQL
varies, and this setting allows Hibernate to generate well-formed SQL for the specific
database in question. Other common dialects include
org.hibernate.dialect.Oracle9Dialect and org.hibernate.dialect.MySQLDialect.

 The <attribute name="SessionFactoryName"> element is the global JNDI name for this
service's SessionFactory. We'll use this name in jboss-web.xml (and map it to a local
ENC-style name in web.xml).

 Finally, the <attribute name="CacheProviderClass"> element tells Hibernate what
caching strategy to use. Rather than going round trip to the database for each
request, Hibernate caches the results to improve performance. (See the Hibernate
documentation for a more in-depth discussion of the different CacheProviders.)

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.4. Creating a HAR
Now that we created the HBM files and the Hibernate MBean service deployment descriptor,
we are ready to bundle things up and deploy it as a part of the EAR.

Hibernate applications are bundled up in a Hibernate Archive (HAR). We use the standard Ant
<jar> task in Example 5-5 to create the HAR.

Example 5-5. build.xml

<!-- ====================================== -->

 <target name="har" depends="generate-hbm"

 description="Builds the Hibernate HAR file">

 <mkdir dir="${distribution.dir}" />

 <jar destfile="${distribution.dir}/jaw.har">

 <!-- include the hbm.xml files -->

 <fileset dir="${gen.source.dir}">

 <include name="**/*.hbm.xml"/>

 </fileset>

 <!-- include hibernate-service.xml -->

 <metainf dir="${hibernate.dir}">

 <include name="hibernate-service.xml"/>

 </metainf>

 </jar>

 </target>

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.5. Adding the HAR to the EAR
Moving up a level from the common subproject to the master project, we need to make sure
that the EAR file includes our newly created HAR. The master build file already handles this
step, since the jaw.har file is built in the same directory as common.jar. (Look in
common/build/distribution to confirm this.)

But what about our application.xml file? This is traditionally where we identify the JARs that
are included in the EAR. HARs are not a standard part of a J2EE EAR file, so JBoss looks for a
jboss-app.xml file to handle container-specific exceptions to the standard. src/META-INF/
stores this file, right next to your application.xml file. Example 5-6 shows what it looks like.

Example 5-6. jboss-app.xml

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN"

 "http://www.jboss.org/j2ee/dtd/jboss-app_4_0.dtd">

<jboss-app>

 <module>

 <har>jaw.har</har>

 </module>

</jboss-app>

Our <ear> task now includes this file along with the traditional application.xml in Example 5-7.

Example 5-7. Master build.xml

<!-- ====================================== -->

 <target name="ear" depends="compile"

 description="Packages all files into an EAR file">

 <mkdir dir="${build.dir}" />

 <mkdir dir="${distribution.dir}" />

 <echo message="##### Building EAR #####" />

 <ear destFile="${distribution.dir}/${ear.name}"

 appxml="${meta-inf.dir}/application.xml" >

 <!-- files to be included in / -->

 <fileset dir="${webapp.war.dir}" />

 <fileset dir="${common.jar.dir}" />

 <!-- include jboss-app.xml -->

 <metainf dir="${meta-inf.dir}">

 <include name="jboss-app.xml"/>

 </metainf>

 </ear>

 </target>

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.6. Creating a JNDI Lookup
Hibernate is now ready to use. Let's move to the webapp subproject to create the necessary
JNDI lookups.

The first step toward using it is creating a JNDI reference to it in jboss-web.xml. Example 5-8
shows what the file looks like now.

Example 5-8. jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.3V2//EN"

 "http://www.jboss.org/j2ee/dtd/jboss-web_3_2.dtd">

<jboss-web>

 <resource-ref>

 <res-ref-name>jdbc/JBossAtWorkDS</res-ref-name>

 <jndi-name>java:/JBossAtWorkDS</jndi-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>hibernate/SessionFactory</res-ref-name>

 <jndi-name>java:/hibernate/SessionFactory</jndi-name>

 </resource-ref>

</jboss-web>

Remember that <res-ref-name> is the local ENC-style name. With the implied java:comp/env/
prefix, the full ENC-style JNDI name for our Hibernate service is
java:comp/env/hibernate/SessionFactory.

The global JNDI name (<jndi-name>) matches the setting in hibernate-service.xml
java:/hibernate/SessionFactory.

Example 5-9 shows what the web.xml file now looks like.

Example 5-9. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>/controller/*</url-pattern>

 </servlet-mapping>

 <resource-ref >

 <res-ref-name>jdbc/JBossAtWorkDS</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref>

 <res-ref-name>hibernate/SessionFactory</res-ref-name>

 <res-type>net.sf.hibernate.SessionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</web-app>

Of course, our trusty friend XDoclet does all the file generation, courtesy of the tags in
ControllerServlet (Example 5-10).

Example 5-10. ControllerServlet.java

/**

 * @web.servlet

 * name="Controller"

 *

 * @web.servlet-mapping

 * url-pattern="/controller/*"

 *

 * @web.resource-ref

 * name="jdbc/JBossAtWorkDS"

 * type="javax.sql.DataSource"

 * auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="jdbc/JBossAtWorkDS"

 * jndi-name="java:/JBossAtWorkDS"

 *

 * @web.resource-ref

 * name="hibernate/SessionFactory"

 * type="net.sf.hibernate.SessionFactory"

 * auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="hibernate/SessionFactory"

 * jndi-name="java:/hibernate/SessionFactory"

 */

public class ControllerServlet extends HttpServle

Recall that we perform JNDI lookups via the ServiceLocator class in
common/src/com/jbossatwork/util. ServiceLocator.getHibernateSessionFactory() returns a
SessionFactory. Realistically, usually we just need to get a Hibernate Session, so a
convenience method in Example 5-11 just returns a Session.

Example 5-11. ServiceLocator.java

public static SessionFactory getHibernateSessionFactory(

 String jndiSessionFactoryName) throws ServiceLocatorException

{

 SessionFactory sessionFactory = null;

 try {

 Context ctx = new InitialContext();

 sessionFactory = (SessionFactory)

ctx.lookup(jndiSessionFactoryName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return sessionFactory;

 }

 public static Session getHibernateSession(

 String jndiSessionFactoryName) throws

ServiceLocatorException {

 Session session = null;

 try

 {

 session =

 getHibernateSessionFactory(jndiSessionFactoryName).openSession(

);

 }

 catch (Exception e)

 {

 throw new ServiceLocatorException(e);

 }

 return session;

 }

For this class to compile, we need to make sure that the Hibernate JARs are on the classpath
somewhere. You can either copy the Hibernate jars found in
$JBOSS_HOME/server/default/deploy/jboss-hibernate.deployer to common/compile-lib, or
refer to them in place as we did in Example 5-12. (Be sure that the environment variable
$JBOSS_HOME is defined before you run this.)

Example 5-12. build.xml

<property name="hibernate.lib.dir"

 value="${env.JBOSS_HOME}/server/default/deploy/jboss-hibernate.deployer"/>

 <!--

 == =

 This builds the classpath used for compilation.

 NOTE: This is independent of your system classpath

 == =

 -->

 <path id="compile.classpath">

 <fileset dir="${compile.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${hibernate.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
http://www.processtext.com/abcchm.html

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.7. Hibernate Checklist
Before we get to the actual HibernateCarDAO , let's recap what we've done up to this point.
We:

 Added Hibernate tags to the CarDTO and created an Ant task to create the Mapping
File (cardto.hbm.xml)

 Created a Hibernate MBean service descriptor (hibernate-service.xml)

 Bundled these two files up in a HAR (common/build/distribution/jaw.har)

 Created a jboss-app.xml file so JBoss would know how to deploy the HAR included in
the EAR

 Created a global JNDI reference to the Session Factory in jboss-web.xml (
java:/hibernate/SessionFactory)

 Created a local JNDI reference to the Session Factory in web.xml conforming to the
J2EE ENC naming style (java:comp/env/hibernate/SessionFactory)

 Modified the ServiceLocator class that encapsulates all JNDI lookups to return a
Hibernate Session

JBoss 4.0.2 and Hibernate 3.0.2 Issues

Bugs are facts of life. Even though JBoss and Hibernate are excellent products,
JBoss 4.0.2 and Hibernate 3.0.2 straight out of the box have one significant
problema core JAR file that inadvertently was left out of the distribution. The
Apache Jakarta Commons Collections JAR needs to be downloaded separately and
installed for Hibernate to work correctly. Visit the website (
http://jakarta.apache.org/site/downloads/downloads_commons-collections.cgi)
and download Version 2.1.1 of the JAR. Then copy it to one of the following
directories:

 $JBOSS_HOME/server/default/lib

 $JBOSS_HOME/server/default/deploy/jboss-hibernate.deployer

This issue should be resolved in JBoss 4.0.3.

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://jakarta.apache.org/site/downloads/downloads_commons-collections.cgi
http://jakarta.apache.org/site/downloads/downloads_commons-collections.cgi
http://www.processtext.com/abcchm.html

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.8. HibernateCarDAO
It's taken a while to get here, but now that the infrastructure is in place, we can get to the
whole point of this chapterseeing Hibernate in action. In JDBCCarDAO, we performed the SQL
query and manually marshaled the ResultSet rows into CarDTO objects.

Example 5-13 shows what the JDBC code looks like.

Example 5-13. JDBCCarDAO.java

private static final String DATA_SOURCE="java:comp/env/jdbc/JBossAtWorkDS";

 public List findAll()

 {

 List carList = new ArrayList();

 DataSource dataSource = null;

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try

 {

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 conn = dataSource.getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery("select * from CAR");

 while(rs.next())

 {

 CarDTO car = new CarDTO();

 car.setId(rs.getInt("ID"));

 car.setMake(rs.getString("MAKE"));

 car.setModel(rs.getString("MODEL"));

 car.setModelYear(rs.getString("MODEL_YEAR"));

 carList.add(car);

 }

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if(rs != null){rs.close();}

 if(stmt != null){stmt.close();}

 if(conn != null){conn.close();}

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 return carList;

 }

It's nearly 50 lines of code, if you include all the exception handling. The point of showing this
to you is to remind you that we do all the work by hand.

Now let's see the same method implemented with Hibernate in Example 5-14.

Example 5-14. HibernateCarDAO.java

private static final String

 HIBERNATE_SESSION_FACTORY="java:comp/env/hibernate/SessionFactory";

 public List findAll()

 {

 List carList = new ArrayList();

 Session session = null;

 try

 {

 session =

ServiceLocator.getHibernateSession(HIBERNATE_SESSION_FACTORY);

 Criteria criteria = session.createCriteria(CarDTO.class);

 carList = criteria.list();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 return carList;

 }

It is far more compactwith a nearly 50% reduction in total lines of code. More importantly, the
code doing the real work was reduced to three steps:

1. Acquire a Hibernate session

2. Create a Criteria object. This line is the Hibernate equivalent of saying "select * from
CAR".

3. Get the resulting carList from the query.

The ResultSet row marshalling still happens, but the Hibernate API takes care of it behind the
scenes. Our code is lean and clean.

We'll explore some more in depth Hibernate examples in just a bit, and will cover the full CRUD
spectrum (Create, Read, Update, and Delete). But for now, let's change our ControllerServlet
and deploy the application.

To begin using HibernateCarDAO, all we need to do is change how the CarDAO interface is
instantiated in ControllerServlet (Example 5-15).

Example 5-15. ControllerServlet.java

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

Now that everything is in place, let's build and deploy the application:

1. Type ant in the root directory of 05a-list to build the project.

2. Shut down JBoss.

3. Type ant colddeploy.

4. Start JBoss back up.

5. Visit http://localhost:8080/jaw in a web browser.

Click on the View Inventory link to see Figure 5-1.

Figure 5-1. viewCarList using Hibernate

OK, so we've been through at least five distinct iterations that have all given us the same
result:

 Using scriptlet code to generate the carList

 Using the ControllerServlet to generate the carList

 Using the InMemoryCarDAO to generate the carList

 Using the JDBCCarDAO to generate the carList

 Using the HibernateCarDAO to generate the carList

In each case, the view remained constantonly the back-end services have gotten
progressively more sophisticated. For sticking with us this long, we'll reward you with some
new functionality. Let's flesh out this example by allowing the user to add new cars, edit
existing cars, and delete cars from the list. This will allow us to run Hibernate through its
paces.

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.9. Adding a Car
To add a new car, we'll create a new link on the viewCarList page, as in Figure 5-2.

Figure 5-2. viewCarList with Add Car link

This link will submit an addCar action request to our ControllerServlet (
http://localhost:8080/jaw/controller?action=addCar).

The ControllerServlet in Example 5-16 places an empty CarDTO in the Request scope and
redirects to the carForm.jsp page.

Example 5-16. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else if(ADD_CAR_ACTION.equals(actionName))

 {

 request.setAttribute("car", new CarDTO());

 destinationPage = "/carForm.jsp";

 }

 else

 {

 String errorMessage = "[" + actionName + "] is not a valid

action.";

 request.setAttribute(ERROR_KEY, errorMessage);

 }

The carForm.jsp page in Figure 5-3 allows the user to type in the details of a new car and
save it.

Figure 5-3. carForm.jsp

Example 5-17 shows the JSP code.

Example 5-17. carForm.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

</head>

<body>

 <p>[Return to List]</p>

 <form method="post" action="controller">

 <input type="hidden" name="action" value="saveCar" />

 <input type="hidden" name="id" value="${car.id}" />

 <table>

 <!-- input fields -->

 <tr>

 <td>Make</td>

 <td><input type="text" name="make" value="${car.make}" /></td>

 </tr>

 <tr>

 <td>Model</td>

 <td><input type="text" name="model" value="${car.model}" /></td>

 </tr>

 <tr>

 <td class="model-year">Model Year</td>

 <td><input type="text" name="modelYear" value="${car. modelYear}"

/></td>

 </tr>

 <!-- Save/Reset buttons -->

 <tr>

 <td colspan="2">

 <input type="submit" name="save" value="Save" />

 <input type="reset" name="reset" value="Reset" />

 </td>

 </tr>

 </table>

 </form>

</body>

</html>

The JSP pulls the CarDTO from the Request scope and uses it to populate the HTML form. This
is less important right now when the CarDTO is in its initial (empty) state. It will become more
important when we reuse this form to edit Car information.

When the user clicks the "Save" button, the data will be sent back up to the
ControllerServlet in Example 5-18 through a saveCar action.

Example 5-18. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else if(ADD_CAR_ACTION.equals(actionName))

 {

 request.setAttribute("car", new CarDTO());

 destinationPage = "/carForm.jsp";

 }

 else if(SAVE_CAR_ACTION.equals(actionName))

 {

 //build the car from the request parameters

 CarDTO car = new CarDTO();

 car.setMake(request.getParameter("make"));

 car.setModel(request.getParameter("model"));

 car.setModelYear(request.getParameter("modelYear"));

 //save the car

 CarDAO carDAO = new HibernateCarDAO();

 carDAO.create(car);

 //prepare the list

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else

 {

 String errorMessage = "[" + actionName + "] is not a valid

action.";

 request.setAttribute(ERROR_KEY, errorMessage);

 }

The saveCar action marshals the name/value parameter pairs from the request into a
well-formed CarDTO and calls carDAO.create() to save it into the database. Just as we
delegated object creation to Hibernate when pulling data from the database, all modern MVC
web frameworks will marshal name/value pairs into objects on your behalf as well. Our
homegrown MVC framework doesn't offer you this convenience, if only to more clearly
demonstrate what is going on under the covers.

To give you an idea of what the level of effort would be to use straight JDBC to save your
new car to the database, Example 5-19 shows the create() method in JDBCCarDAO.

Example 5-19. JDBCCarDAO.java

 public void create(CarDTO car)

 {

 DataSource dataSource = null;

 Connection conn = null;

 PreparedStatement pstmt = null;

 String insertSql = "insert into CAR(MAKE, MODEL, MODEL_YEAR)

values(?,?,?)";

 try

 {

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 conn = dataSource.getConnection();

 pstmt = conn.prepareStatement(insertSql);

 pstmt.setString(1, car.getMake());

 pstmt.setString(2, car.getModel());

 pstmt.setString(3, car.getModelYear());

 pstmt.executeUpdate();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if(pstmt != null){pstmt.close();}

 if(conn != null){conn.close();}

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 }

The method accepts a CarDTO, pulls the individual member data out, populates a SQL INSERT
statement, and executes the query.

Example 5-20 shows the same functionality using Hibernate.

Example 5-20. HibernateCarDAO.java

public void create(CarDTO car)

 {

 Session session = null;

 Transaction tx = null;

 try

 {

 session =

ServiceLocator.getHibernateSession(HIBERNATE_SESSION_FACTORY);

 tx = session.beginTransaction();

 session.save(car);

 tx.commit();

 }

 catch (Exception e)

 {

 try{tx.rollback();}

 catch(Exception e2){System.out.println(e2);}

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 }

Hibernate handles all the member data wrangling. We simply hand it a CarDTO, and it takes
care of the rest.

 Type ant in the root directory of 05b-add to build the project.

 Shut down JBoss.

 Type ant colddeploy.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

Add several cars using the HTML form. Use the Ant script in the SQL directory to query the
results outside the container. Prove to yourself that no sneaky stuff is going onHibernate is
truly inserting the values into the database on our behalf.

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw/controller?action=addCar
http://localhost:8080/jaw
http://localhost:8080/jaw/controller?action=addCar
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.10. Editing a Car
To edit an existing car, we'll add another set of links on the viewCarList page in Figure 5-4.

Figure 5-4. Editing cars

The Edit links each contain the ID of the displayed car. They call the ControllerServlet using
the editCar action. Example 5-21 shows the JSP code.

Example 5-21. carList.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

</head>

<body>

 <p>[Add Car]</p>

 <table>

 <tr>

 <th>Action</th>

 <th>Make</th>

 <th>Model</th>

 <th class="model-year">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td>Edit</td>

 <td>${car.make}</td>

 <td>${car.model}</td>

 <td class="model-year">${car.modelYear}</td>

 </tr>

 </c:forEach>

 </table>

</body>

</html>

The ControllerServlet in Example 5-22 catches the request, queries the requested CarDTO out
of the database using the ID, places it in the Request scope, and finally redirects to the
carForm.jsp.

Example 5-22. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else if(ADD_CAR_ACTION.equals(actionName))

 {

 request.setAttribute("car", new CarDTO());

 destinationPage = "/carForm.jsp";

 }

 else if(EDIT_CAR_ACTION.equals(actionName))

 {

 int id = Integer.parseInt(request.getParameter("id"));

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("car", carDAO.findById(id));

 destinationPage = "/carForm.jsp";

 }

 else if(SAVE_CAR_ACTION.equals(actionName))

 {

 //build the car from the request parameters

 CarDTO car = new CarDTO();

 car.setMake(request.getParameter("make"));

 car.setModel(request.getParameter("model"));

 car.setModelYear(request.getParameter("modelYear"));

 //save the car

 CarDAO carDAO = new HibernateCarDAO();

 carDAO.create(car);

 //prepare the list

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else

 {

 String errorMessage = "[" + actionName + "] is not a valid

action.";

 request.setAttribute(ERROR_KEY, errorMessage);

 }

This time having a filled-in CarDTO in Request scope allows us to populate the form in Figure 5-5
with the appropriate data.

Figure 5-5. carForm.jsp used to edit a CarDTO

The "Save" button still sends the form data back to the ControllerServlet using the saveCar
action, only this time the ID value is a positive integer. (Recall that CarDTO.id is initialized to
"-1" unless you provide a specific value.) This allows us to reuse the saveCar method for both
inserts and updates. Example 5-23 shows the modified method in ControllerServlet.

Example 5-23. ControllerServlet.java

// perform action

 if(VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else if(ADD_CAR_ACTION.equals(actionName))

 {

 request.setAttribute("car", new CarDTO());

 destinationPage = "/carForm.jsp";

 }

 else if(EDIT_CAR_ACTION.equals(actionName))

 {

 int id = Integer.parseInt(request.getParameter("id"));

 CarDAO carDAO = new HibernateCarDAO();

 request.setAttribute("car", carDAO.findById(id));

 destinationPage = "/carForm.jsp";

 }

 else if(SAVE_CAR_ACTION.equals(actionName))

 {

 //build the car from the request parameters

 CarDTO car = new CarDTO();

 car.setId(Integer.parseInt(request.getParameter("id")));

 car.setMake(request.getParameter("make"));

 car.setModel(request.getParameter("model"));

 car.setModelYear(request.getParameter("modelYear"));

 //save the car

 CarDAO carDAO = new HibernateCarDAO();

 if(car.getId() = = -1)

 {

 carDAO.create(car);

 }

 else

 {

 carDAO.update(car);

 }

 //prepare the list

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

 else

 {

 String errorMessage = "[" + actionName + "] is not a valid

action.";

 request.setAttribute(ERROR_KEY, errorMessage);

 }

Which, of course, brings us back to the DAO. Example 5-24 shows what the update code
looks like in JDBCCarDAO.

Example 5-24. JDBCCarDAO.java

public void update(CarDTO car)

 {

 DataSource dataSource = null;

 Connection conn = null;

 PreparedStatement pstmt = null;

 String insertSql =

 "update CAR set MAKE=?, MODEL=?, MODEL_YEAR=? where id=?";

 try

 {

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 conn = dataSource.getConnection();

 pstmt = conn.prepareStatement(insertSql);

 pstmt.setString(1, car.getMake());

 pstmt.setString(2, car.getModel());

 pstmt.setString(3, car.getModelYear());

 pstmt.setInt(4, car.getId());

 pstmt.executeUpdate();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if(pstmt != null){pstmt.close();}

 if(conn != null){conn.close();}

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 }

And Example 5-25 shows the corresponding reduced code in HibernateCarDAO.

Example 5-25. HibernateCarDAO.java

 public void update(CarDTO car)

 {

 Session session = null;

 Transaction tx = null;

 try

 {

 session =

 ServiceLocator.getHibernateSession(HIBERNATE_SESSION_FACTORY);

 tx = session.beginTransaction();

 session.update(car);

 tx.commit();

 }

 catch (Exception e)

 {

 try{tx.rollback();}

 catch(Exception e2){System.out.println(e2);}

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 }

 Type ant in the root directory of 05c-edit to build the project.

 Shut down JBoss.

 Type ant colddeploy.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

Use the web interface to make changes to the cars in the database.

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.11. Deleting a Car
Hopefully, at this point you are getting into a groove. As you incrementally add functionality
to the website, you will tend to complete the same steps in order each time:

 Modify the View (JSP pages).

 Modify the Controller (ControllerServlet).

 Modify the Model (CarDTO, CarDAO).

Let's add the final bit of functionality for this chapterallowing the user to delete cars. First,
we'll modify the View in Figure 5-6.

Figure 5-6. carList.jsp with delete

The final carList.jsp in Example 5-26 allows the user to check individual cars and delete them
in bulk. Notice that clicking on the Delete column header checks all of the records. Clicking the
"Reset" button unchecks all records.

Example 5-26. carList.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="default.css">

 <script language="JavaScript">

 function checkAll(field)

 {

 for (i=0; i < field.length; i++)

 {

 field[i].checked = true;

 }

 }

 </script>

</head>

<body>

 <p>[Add Car]</p>

 <form name="deleteForm" method="post" action="controller">

 <input type="hidden" name="action" value="deleteCar" />

 <table>

 <tr>

 <th>Delete</th>

 <th>Action</th>

 <th>Make</th>

 <th>Model</th>

 <th class="model-year">Model Year</th>

 </tr>

 <c:forEach items='${carList}' var='car'>

 <tr>

 <td><input type="checkbox" name="id" value="${car.id}"></td>

 <td>Edit</td>

 <td>${car.make}</td>

 <td>${car.model}</td>

 <td class="model-year">${car.modelYear}</td>

 </tr>

 </c:forEach>

 <tr>

 <td colspan="5">

 <input type="submit" name="Delete Checked" value="Delete Checked" />

 <input type="reset" name="Reset" value="Reset" />

 </td>

 </tr>

 </table>

 </form>

</body>

</html>

This list is now wrapped in an HTML form. Each record's checkbox field has the same name:
ID. This means that if you check multiple records, the IDs will be sent up to the deleteCar
action in ControllerServlet as a string array.

The next thing we must do to implement delete functionality is modify the Controller in
Example 5-27.

Example 5-27. ControllerServlet.java

 else if(DELETE_CAR_ACTION.equals(actionName))

 {

 //get list of ids to delete

 String[] ids = request.getParameterValues("id");

 //delete the list of ids

 CarDAO carDAO = new HibernateCarDAO();

 if(ids != null)

 {

 carDAO.delete(ids);

 }

 //prepare the list

 request.setAttribute("carList", carDAO.findAll());

 destinationPage = "/carList.jsp";

 }

Finally, we'll add the delete() method to the DAOs. Example 5-28 shows the JDBCCarDAO
implementation.

Example 5-28. JDBCCarDAO.java

public void delete(String[] ids)

 {

 DataSource dataSource = null;

 Connection conn = null;

 Statement stmt = null;

 String sql = "delete from CAR where id in(";

 try

 {

 dataSource = ServiceLocator.getDataSource(DATA_SOURCE);

 conn = dataSource.getConnection();

 stmt = conn.createStatement();

 StringBuffer idList = new StringBuffer();

 for(int i = 0; i < ids.length; i++)

 {

 idList.append(ids[i]);

 if(i < (ids.length - 1))

 {

 idList.append(",");

 }

 }

 stmt.executeUpdate(sql + idList.toString() + ")");

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if(stmt != null){stmt.close();}

 if(conn != null){conn.close();}

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 }

Example 5-29 shows the greatly simplified code in HibernateCarDAO.

Example 5-29. HibernateCarDAO.java

 public void delete(String[] ids)

 {

 Session session = null;

 Transaction tx = null;

 try

 {

 session =

 ServiceLocator.getHibernateSession(HIBERNATE_SESSION_FACTORY);

 tx = session.beginTransaction();

 for(int i=0; i < ids.length; i++)

 {

 CarDTO car =

 (CarDTO) session.get(CarDTO.class, new Integer(ids[i]));

 session.delete(car);

 }

 tx.commit();

 }

 catch (Exception e)

 {

 try{tx.rollback();}

 catch(Exception e2){System.out.println(e2);}

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 }

1. Type ant in the root directory of 05d-delete to build the project.

2. Shut down JBoss.

3. Type ant colddeploy.

4. Start JBoss back up.

5. Visit http://localhost:8080/jaw in a web browser.

Remember that you can always run the Ant script in the SQL subproject to repopulate the
database.

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.12. Looking Ahead...
Hopefully you feel like we're picking up a head of steam here. You should feel comfortable with
the Web tier, as well as the Persistence tier, at this point. The next several chapters focus on
the middle tier (the Business tier), where you will get comfortable with Stateless Session
Beans (SLSBs) and Message-Driven Beans (MDBs).

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 6. Stateless Session Beans
Everything we've done up to this point technically could have been done without using JBoss.
Our web tier simply uses the embedded Tomcat Servlet containerwe could run our WAR
unchanged in a standalone Tomcat instance. Our persistence tier used both JDBC and
Hibernate. Again, both are available in non-JBoss installations. We simply took advantage of
them because they come bundled with JBoss.

We now are firmly in the middle of the business tier. The next several chapters will focus on
components that must be run in JBoss. More specifically, we'll look at EJB components that
must run inside an EJB container.

Many people would argue that Enterprise JavaBeans are what put the "E" in the Java2
Enterprise Edition. But you also could argue that web-centric applications that use only JSPs
and Servlets are still legitimate J2EE applications. These next sections will introduce you to
technologies that allow you to build a large-scale, distributed, transaction-based Enterprise
application.

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.1. Issues with EJBs
Our two biggest complaints about EJBs are that:

 They require a complex set of programming artifacts for deployment.

 Developers tend to overuse them.

The complexity of the EJB programming model has hindered the adoption of J2EE. To deploy an
EJB, you are dealing with as many as seven or more files (five Java files and two deployment
descriptors). As you'll see later on, the main thrust of J2EE 1.5 (which includes EJB 3.0) is to
simplify and lighten J2EE development by eliminating many of the programming artifacts
required to deploy components. J2EE 1.5 will still offer core enterprise-class services such as
transaction management and security, but it will be much easier to use. This book will not go
into much detail about EJB 3.0 because the specification hasn't been finalized. But it will
briefly discuss the improvements you'll see once EJB 3.0 becomes available. This book uses
EJB 2.1, and it still has to deal with deployment descriptors and extra Java interfaces. It will
show how XDoclet generates most of the code for us so that we can focus on business logic.

As software developers, most of us have the tendency to over-engineer a solution. You may
also have heard the old adage, "If all you've got is a hammer, every problem tends to look like
a nail." Bruce Tate, author of Better, Faster, Lighter Java (O'Reilly), calls the combination of
these two predilections the "Golden Hammer" theory. Developers who know only EJBs tend to
use them in wholly inappropriate situations.

Tate's book, as the title might imply, argues against the notion that every application you
develop should be "Enterprise-grade," with all the associated complexity and overhead. He
recommends the use of other third-party ORMs rather than CMP Entity Beans, and also
suggests using a "better, faster, lighter" container to manage transactional applications called
the Spring Framework. Like Hibernate, Spring is not J2EE-specification compliant and can run
inside either a J2EE container or standalone. Both Hibernate and Spring have had a huge
impact on the upcoming EJB 3.0 specification, and due to the influence of these external
frameworks, EJB 3.0 will be lighter and simpler to use.

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.2. Should I Use EJB or Not?
From their inception, EJBs have been used for the right and wrong reasons. We've seen
EJB-based projects that have failed miserably and others that were highly successful. So what
made the difference? Here are a couple of key success factors with EJBs:

 Developer knowledge and maturity

 Decision-making

EJB development and deployment is complex with EJB 2.1 and earlier, so even if you have a
good reason for using EJBs, your project still could fail if your development team hasn't worked
with them before. If you're in this situation, take the same approach with EJBs as you would
with any other technology that's new to youlearn how to use it before you build your system.
The best way to quickly get up to speed on EJB is to get some training and to augment your
team with a few experienced developers who've used them to develop production-quality
systems.

But taking classes, hiring experienced developers, and reading books aren't enough. You also
should consider some guidelines to help you decide if EJBs are appropriate for your
architecture. As we said earlier, there are both good and bad reasons for using EJBs (of all
types).

Here are some reasons for not using EJBs:

Your application uses threads

The EJB specification forbids using threads because the threads your code creates are
outside the container's control and could cause unexpected results.

Your application is read-only or read-mostly

If your application reads data from your database most or all of the time, then
transactions aren't important to you. In this case, EJBs are overkill.

Here are some dubious or wrong reasons for developing with EJBs:

You want to use database connection pooling with JDBC DataSources

You don't need an EJB or an EJB container to use a DataSource. You can configure a
standalone Tomcat container with a database connection pool and use a DataSource.

You want to use Entity Beans for persistence

Other third-party ORMs, such as Hibernate, provide more functionality and better
performance.

You think you'll need them later, so you're adding them now

Don't over-architect. EJBs add complexity, so add them only when they help you solve
a problem. Remember that you can always go back and refactor to an EJB solution
when the need arises.

You want to group your related business logic together

You could group order-related functionality into an EJB, but you could also do this with
a POJO. The need to group related logic together isn't a strong enough reason to use
an EJB. But if your business processes require transactions or if you have external
remote clients, you should consider using an EJBsee the good reasons below.

Web tier session caching

Caching frameworks like JBoss Cache or OSCache (by Open Symphony) provide a
powerful, lightweight, and more efficient alternative to the overhead incurred by EJBs.

Here are some good reasons for using EJBs:

Distributed transactions

Your application may access different types of back-end systems such as databases,
messaging systems, or mainframes. If one of these systems has a problem with its part
of a transaction, then you want each of the other systems to roll back their unit of
work. All parts of the transaction either succeed or fail together.

Asynchronous processing

Message-Driven Beans are designed for consuming JMS messages. It's easier to use an
MDB than to create your own infrastructure. The next chapter will talk more about
MDBs.

Declarative transactions

Rather than cluttering your code with low-level transaction management logic, you can
push transaction settings into deployment descriptors. Container-Managed
Transactions (CMT) is one of the most popular reasons for using EJBs. CMT uses the
EJB container's transaction services and manages transaction boundaries on behalf of
the developer.

Component security

Declarative security enables you to set security levels for EJBs and for individual EJB
methods based on user roles. The Security chapter covers EJB security.

Remote access

You may have Java applications spread across multiple servers, or you could have a
Swing user interface. In either case, EJBs are a good fit because they're designed to
be distributed components. Remote EJB access uses RMI as its communications
protocolRMI is part of the core Java platform and interoperates with CORBA.

If your application requirements match several of the good reasons to use EJBs, then you
probably need EJBs. As a rule, if your application doesn't have requirements concerning
transactions and/or asynchronous processing , then EJBs probably aren't worth the added
complexity and overhead. But if your application has to deal with these issues, EJBs make
sense and provide real value. Even if your application requires EJBs, you won't need them
everywhere. Consider your needs on a case-by-case basis.

Real Life, Real Decisions

Tom comes from a distributed computing background where applications always ran
on separate machines, so when he moved into the Java world, EJB technology was
a natural fit. Here are a couple of real-world examples from projects where his
clients had to decide if EJBs made sense for them.

 A client asked our EJB enthusiast to evaluate their architecture. The client
wanted to know how to build a J2EE system that followed good design
principles. They were concerned that their web application running on
Tomcat wouldn't scale as more users were added, and were considering
buying a commercial EJB container because they thought it would make
things "better." It turned out that the application was read-onlyit queried
the database and showed the results on a JSP. So, there was no need to
impose transactions because they weren't updating the database. In this
case, using an EJB container and adding EJBs was overkill. The real issue
wasn't EJBs at allthe client's real concern was that they only had a single
connection to the database and that their web site would fail under heavy
loads. Our author showed the client's developers how to use database
connection pooling and DataSources with Tomcat because this was all that
they needed. Their scalability issues were solved, and they avoided the
commercial license fees for the EJB container and the cost of additional
training.

 On another project, the client had distributed applications that needed to
communicate across the enterprise, and much of the business logic involved
multiple database tables and back-end resources. Some business processes
were synchronous and some were asynchronous. These requirements
matched many of the criteria for using EJBs, so the company based its
architecture on EJB technology. The project launch was a success because
the technology used met the needs of the business, and the application
performed well in a large-scale production environment. In this case, EJBs
made sense and were the right tool for the job.

Presumably you've chosen JBoss as your application server because you've already done the
analysis and your application truly requires a fully functional EJB container. Even so, the
acronym You Ain't Gonna Need It (YAGNI) should never be too far from the forefront of your
application design. We take an additive approach when building applications, much like the
flow of this book. Don't avoid technologies that clearly solve a problem, but don't add them
just because they might solve a problem at some point down the road.

Please don't misunderstand uswe don't hate EJBs and we continue to use them on real-world
projects. But we encourage you to look at your system-level and business requirements
before using EJBs. We use Stateless Session Beans for managing transactions and
Message-Driven Beans for asynchronous processing. The next section covers transactions in
greater detail.

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.3. Business Tier
Let's review the three basic tiers of J2EE development. The Web tier handles the look and feel
of the application. It is what the user interacts with. The Persistence tier handles long-term
data storage. The Business tier handles coarse-grained business rules.

For example, consider the "Add Car" user story that we implemented in the last chapter. The
user clearly has a way to enter new cars into the systemthe Web tier provides an HTML form.
The new car has a way to be persisted for the long-termour DAOs in the Persistence tier. But
what about the business rules for adding a new car to the JAW inventory?

When a dealer gets a new car on the lot, many actions need to happen. Someone needs to
physically receive the car. Someone else needs to affix the dealer logo to the back of the car.
Accounting needs to add it to the books as an asset. Marketing needs to add it to the "New
Arrivals" listing in the newspaper ads.

While these are actions that would be done by humans in the real world, the same types of
things usually need to happen in a J2EE application as well. In a J2EE application, we call a
grouping of activities a Transaction. Transactions should be atomicif one of the steps fails, all
grouped activities should roll back to their initial state.

The classic example is a bank transactionif you transfer money from your checking account to
your savings account, the two distinct activities are treated as an atomic transaction. If
your SavingsAccountDAO.depositMoney() method fails, you want your
CheckingAccountDAO.withdrawMoney() method call to roll back as well. Otherwise, the money
you took out will be lost.

Transactions are usually synchronous and represent a series of sequential steps to carry out a
business process. Another type of activity occurs over a longer course of timean
asynchronous activity. These types of activities tend to be a series of individual steps that
are performed in a specific order, but don't necessarily cause the previous step to roll back.
Think "work-flow" instead of "transaction." Think macro-view instead of micro-view. For
example, if marketing doesn't get the new car in this week's newspaper ad, we don't need to
roll back the dealer logo application and the accounting activities.

The EJB specification provides specific technologies that handle both synchronous and
asynchronous activities.

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.4. Enterprise JavaBeans
There are three types of EJBs:

Session Beans

Session Beans allow the developer to group the steps of a business process into a
single transaction. The activities contained in a Session Bean are synchronous.

Message-Driven Beans (MDBs)

MDBs are good for processing business logic asynchronously and/or executing
long-running tasks in the background. They listen on Java Messaging Service (JMS)
destinations (Queues and Topics) and process incoming messages as they arrive.

Entity Beans

Entity Beans are a persistence mechanism that encapsulates Create, Read, Update,
and Delete (CRUD) operations on database tables.

Although some shops still use entity beans, most of the Java community has moved away from
them in favor of other, more flexible third-party ORM solutions. However, the other two types
of EJBs still are widely used. We'll talk about Session Beans in this chapter and MDBs in the
next.

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.5. Our Example
We are going to upgrade the JAW Motors application by adding a "Buy Car" user story that
uses a transaction. In addition to marking a record into the CAR table as "Sold", we'll also
insert a corresponding record into the ACCOUNTING table. A Session Bean is appropriate because
buying a car is an atomic transaction. The update to the CAR table and the insert into the
ACCOUNTING table must both succeedif one database operation fails, the other operation rolls
back. We'll take three iterations to move from a web-only application to one that uses a
Session Bean for its business logic:

Iteration 1

Introduce a Session Bean. The Controller Servlet uses the InventoryFacadeBean rather
than the DAO to list the cars on the web page. All other actions in the Controller
Servlet still use the DAO.

Iteration 2

We then move all business logic out of the Controller Servlet into the
InventoryFacadeBean (which wraps the DAO).

Iteration 3

Upgrade the web pages, Controller Servlet, and InventoryFacadeBean to buy a car. We'll
also create a new AccountingHibernateDAO and AccountingDTO for the ACCOUNTING table.

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.6. Iteration 1Introduce a Session Bean
In this Iteration, we'll take the following steps to introduce a Session Bean to the JAW Motors
application and lay the groundwork for the rest of the chapter.

 Modify the Persistence Tier:

o Add a STATUS column to the CAR table.

o Make the CarDTO Serializable, and add a status field along with getter and
setter methods.

o Add a filterByStatus() method to the HibernateCarDAO.

 Upgrade the web site:

o Refactor the Controller Servlet's viewCarList action to use the
InventoryFacadeBean for finding all available (unsold) cars.

o Add a getEjbLocalHome() method to the ServiceLocator to look up an EJB's
Local Home Interface using JNDI.

o Add EJB-based JNDI reference settings to the Web deployment descriptors (
web.xml and jboss-web.xml).

o Automate EJB-based JNDI reference settings in the Web deployment descriptors
with XDoclet.

 Add a Session Bean:

o Develop and deploy the InventoryFacadeBean.

6.6.1. Modifying the CAR Table

The CAR table's new STATUS column indicates whether a car is "Sold" or "Available." Example 6-1
shows the new SQL in ch06-a/sql/build.xml used to create the table.

Example 6-1. sql/build.xml

CREATE TABLE CAR (

 ID BIGINT identity,

 MAKE VARCHAR(50),

 MODEL VARCHAR(50),

 MODEL_YEAR VARCHAR(50),

 STATUS VARCHAR(10)

);

INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR, STATUS)

VALUES (99, 'Toyota', 'Camry', '2005', 'Available');

INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR, STATUS)

VALUES (100, 'Toyota', 'Corolla', '1999', 'Available');

INSERT INTO CAR (ID, MAKE, MODEL, MODEL_YEAR, STATUS)

VALUES (101, 'Ford', 'Explorer', '2005', 'Available');

A car is considered "Available" when you create it. Now let's upgrade the CarDTO.

6.6.2. Upgrading the CarDTO with a Status Field

Here we'll make the CarDTO Serializable and add a new status data member along with
corresponding setter and getter methods. Example 6-2 shows the changes.

Example 6-2. CarDTO.java

package com.jbossatwork.dto;

import java.io.*;

/**

 * @hibernate.class

 * table="CAR"

 */

public class CarDTO implements Serializable

{
 public static final String STATUS_AVAILABLE = "Available";

 public static final String STATUS_SOLD = "Sold";

 ...

 private String status;

 public CarDTO()

 {

 ...

 this.status = CarDTO.STATUS_AVAILABLE;

 }

 public CarDTO(String make, String model, String modelYear)

 {

 ...

 this.status = CarDTO.STATUS_AVAILABLE;

 }

 public CarDTO(int id, String make, String model, String modelYear)

 {

 ...

 this.status = CarDTO.STATUS_AVAILABLE;

 }

 ...

 /**

 * @hibernate.property

 * column="STATUS"

 */

 public String getStatus()

 {

 return status;

 }

 public void setStatus(String status)

 {

 this.status = status;

 }

}

Here's a breakdown of the modifications to the CarDTO:

 The CarDTO now implements the java.io.Serializable interface. We do this so that
the CarDTO will serialize properly when remote clients call the InventoryFacadeBean.
Remote access uses RMI, which requires objects (used as parameters or return values)
to be serializable. Since all data members of the CarDTO are serializable, the only thing
we need to do to make the DTO serializable is mark it as such. Java's default
serialization mechanism takes care of the rest.

 The code that calls the CarDTO will use the STATUS_SOLD and STATUS_AVAILABLE constants
to get, set, and check a car's status.

 Each constructor sets the status as "Available" to mark the car as unsold.

 The getStatus() and setStatus() methods get and set the status. The
@hibernate.property XDoclet tag for the getStatus() method associates the CarDTO's
status data member with the STATUS column in the CAR table.

Now that we've upgraded the database and the CarDTO to hold status information, we'll add a
new method to the HibernateCarDAO that looks at the status.

6.6.3. Adding filterByStatus() to the HibernateDAO

We've added the filterByStatus() method that returns a List of all cars in the inventory
whose status matches the value of the caller-supplied status parameter. Example 6-3 shows
the changes to the HibernateCarDAO.

Example 6-3. HibernateCarDAO.java

public class HibernateCarDAO implements CarDAO

{

 ...

 public List filterByStatus(String status)

 {

 List availableCarList = new ArrayList();

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 Criteria criteria = session.createCriteria(CarDTO.class)

 .add(Restrictions.eq("status", status));

 availableCarList = criteria.list();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 return availableCarList;

 }

 ...

}

The new filterByStatus() method looks similar to the findAll() method from the Hibernate
chapter. The only difference is that we use a Restriction to limit the result set to those cars
whose status matches the value of the fiterByStatus() method's status parameter. Think of
a Hibernate Restriction like a SQL WHERE clause.

We've upgraded everything related to the database, and now we're going to modify the
Controller Servlet to call the InventoryFacadeBean.

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.7. Calling the Session Bean from the Controller
Servlet
We're now going to introduce the InventoryFacadeBean to the JAW Motors application by
calling it from the Controller Servlet. We'll modify the Controller Servlet so it uses the
InventoryFacadeBean rather than the DAO to list the cars on the web page. For now, all other
actions in the Controller Servlet still use the DAO. Example 6-4 shows the changes.

Example 6-4. ControllerServlet.java

package com.jbossatwork;

...

import com.jbossatwork.ejb.*;

...

import javax.ejb.*;

...

public class ControllerServlet extends HttpServlet

{

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException

 {

 ...

 InventoryFacadeLocalHome inventoryHome;

 inventoryHome = (InventoryFacadeLocalHome)

 ServiceLocator.getEjbLocalHome(InventoryFacadeLocalHome.COMP_NAME);

 InventoryFacadeLocal inventory = null;

 try {

 inventory = inventoryHome.create();

 } catch (CreateException ce) {

 throw new RuntimeException(ce.getMessage());

 }

 // perform action

 if (VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 request.setAttribute("carList", inventory.listAvailableCars());

 destinationPage = "/carList.jsp";

 }

 ...

 }

}

The InventoryFacadeBean is a JNDI-based resource, so we've encapsulated the JNDI lookup
with the ServiceLocatorwe'll show the look up code in detail in the next section. The
ServiceLocator.getEjbLocalHome() call does a JNDI lookup on the EJB's Local Home, and
creates a Local Home Interface. The viewCarList action now calls the InventoryFacade's
listAllAvailableCars() method to find all available (unsold) cars in the inventory.

Now that we've shown how to invoke the InventoryFacadeBean, let's take a closer look at the
ServiceLocator that wraps the JNDI lookup.

6.7.1. Factoring Out the JNDI Calls

We've used the ServiceLocator tHRoughout this book to wrap JNDI lookup calls Example 6-5 is
the new EJB-related method.

Example 6-5. ServiceLocator.java

package com.jbossatwork.util;

...

import javax.ejb.*;

...

import javax.naming.*;

...

public class ServiceLocator {

 ...

 public static EJBLocalHome getEjbLocalHome(String localHomeJndiName)

 throws ServiceLocatorException {

 EJBLocalHome localHome = null;

 try {

 Context ctx = new InitialContext();

 localHome = (EJBLocalHome) ctx.lookup(localHomeJndiName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return localHome;

 }

 ...

}

The getEjbLocalHome() method encapsulates a JNDI look up for an EJB Local Home object.
This method takes the following steps:

1. Create the InitialContext to access the JNDI tree.

2. Perform a JNDI lookup.

3. Cast the object returned from JNDI to the correct typejavax.ejb.EJBLocalHome.

4. Throw a ServiceLocatorException that chains a low-level JNDI-related exception and
contains a corresponding error message.

We've written all the necessary code to call an EJB, and now we need to add EJB-based JNDI
references to our web deployment descriptors.

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.8. EJB-Based JNDI References in Web-Based
Deployment Descriptors
In previous chapters we've used the web.xml file to describe and deploy Servlets and JNDI
resources. Example 6-6 shows the new EJB-based JNDI references in web.xml so we can use
the InventoryFacade EJB from the web tier.

Example 6-6. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

 ...

 <ejb-local-ref>

 <ejb-ref-name>ejb/InventoryFacadeLocal</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>InventoryFacadeLocalHome</local-home>

 <local>InventoryFacadeLocal</local>

 </ejb-local-ref>

 ...

</web-app>

The <ejb-local-ref> element enables the web tier to access the InventoryFacade EJB through
its Local Interface. The <ejb-ref-name> is the JNDI name for the EJB
java:comp/env/ejb/InventoryFacadeLocal. Notice that you don't have to specify java:comp/env/
because it is the assumed prefix. The <ejb-type> tells JBoss that this is a Session Bean. The
<local-home> and <local> elements respectively specify the class name of the InventoryFacade
EJB's Local Home and Local Component Interfaces.

A JNDI resource is linked into an application only if we ask for it. JBoss binds resources under
its in-JVM context, java:/. The jboss-web.xml file provides a mapping between the J2EE-style
ENC names and the local JBoss-specific JNDI names that JBoss uses to deploy JNDI-based
resources. Example 6-7 shows the EJB-related JNDI references in jboss-web.xml.

Example 6-7. jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN"

"http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

<jboss-web>

 ...

 <ejb-local-ref>

 <ejb-ref-name>ejb/InventoryFacadeLocal</ejb-ref-name>

 <local-jndi-name>InventoryFacadeLocal</local-jndi-name>

 </ejb-local-ref>

 ...

</jboss-web>

The jboss-web.xml descriptor maps the J2EE-style JNDI names to JBoss-specific JNDI names.
The <ejb-local-ref> element defines a local reference to the InventoryFacade Bean. The
textual value of each <ejb-ref-name> element in jboss-web.xml MUST match the value of an
<ejb-ref-name> in web.xml. The JNDI name in <ejb-ref-name> is relative to java:comp/env, so
the full JNDI name is what we want: java:comp/env/ejb/InventoryFacadeLocal. The JNDI name
in <local-jndi-name> is the name JBoss uses internally to reference the EJB for local access.

6.8.1. Automating EJB-Related JNDI Settings in Web-Based
Deployment Descriptors

As in previous chapters, we don't want to hardcode our deployment descriptors. Since the
JAW Motors application uses EJBs from the web tier, we need to add XDoclet tags to the
Controller Servlet so the Ant build process generates the J2EE standard (web.xml) and
JBoss-specific (jboss-web.xml) web deployment descriptors. Example 6-8 shows the new
XDoclet tags in the Controller Servlet.

Example 6-8. ControllerServlet.java

/**

 * ...

 *

 * @web.ejb-local-ref

 * name="ejb/InventoryFacadeLocal"

 * type="Session"

 * home="InventoryFacadeLocalHome"

 * local="InventoryFacadeLocal"

 *

 * @jboss.ejb-local-ref

 * ref-name="InventoryFacadeLocal"

 * jndi-name="InventoryFacadeLocal"

 *

 */

public class ControllerServlet extends HttpServlet

{

 ...

}

The @web.ejb-local-ref XDoclet tag generates the <ejb-local-ref> element for the
InventoryFacade EJB in web.xml, and the @jboss.ejb-local-ref XDoclet tag generates the
corresponding <ejb-local-ref> element in jboss-web.xml.

Now that we've created the infrastructure to call the InventoryFacade Bean from the web
application, we need to choose which type of Session Bean to use.

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
http://www.processtext.com/abcchm.html

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.9. Session Bean Types
There are two types of Session Beans:

Stateful Session Beans

Hold on to conversational state and maintain a long-running dialog with a client. A
Shopping Cart is an example.

Stateless Session Beans

Do NOT hold on to conversational state, so the client must pass all data needed by the
Stateless Session Bean's business methods.

There is nothing in the example that requires us to maintain state between Session Bean calls.
You'll probably find that most transactions will end up being Stateless. Here are some of the
differences between Stateful and Stateless Session Beans :

 Stateful Session Beans maintain internal state, which causes significant overhead.
Stateless Session Beans are lightweight and do not hold onto application-specific data
members.

 A Stateful Session Bean is tied to a single client, so the container creates a new
instance for each client that invokes the Bean's create() method. A Stateless Session
Bean instance is not tied to a client, so Stateless Session Beans are more scalable
because they are reusableeach instance can service multiple clients concurrently.

 Stateless Session Beans are never passivated (swapped out of the container's memory
and into secondary storage) because there is no need to restore internal state, but a
container can passivate a Stateful Session Bean, incurring significant I/O overhead.

Due to performance reasons, Stateful Session Beans have fallen into disuse, and we
recommend using Stateless Session Beans.

There is really no difference in deploying a Stateful or Stateless Session Beanyou specify the
Session Bean type in the ejb-jar.xml deployment descriptor. But before concerning ourselves
with deployment, let's look at how to implement a Session Bean.

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.10. Session Beans
To add a Session Bean to the JAW Motors application, we need to do the following:

 Define the Local and Remote Interface(s).

 Create the Home Interface(s).

 Develop the Bean Class Code.

 Deploy the Bean with EJB deployment descriptors.

 Automate the Bean deployment with Ant and XDoclet.

 Create the EJB JAR file with Ant.

 Add the EJB JAR file to the EAR.

 Register the EJB JAR file in application.xml.

 Copy the EJB JAR file into the EAR.

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.11. Remote Versus Local EJB Calls
Since we're creating a buyCar() method, it could be called from any number of clients. We
happen to be writing a web application, but the same transaction could conceivably be called
from a Swing Application or even a web service.

This method is highly cohesiveit does only one thingbuy a car from our inventory. It is also
loosely coupled to the other tiersthere is nothing that returns HTML that would tie it to the
web tier, and since it calls a DAO, nothing ties it to a specific database or persistence
strategy.

We now need to decide how the other tiers are going to make this buyCar() method call. The
Servlet container is co-located on the same server in the same JVM as the EJB container, so
we can use the Session Bean's Local interfaces. All objects are in the same memory space, so
under the covers, JBoss will pass things around by reference (technically, the memory location
of the objects).

As our application grows, we might decide to split out this functionality to physically separate
servers. We might move our web tier outside the firewall, move the Persistence tier (or at
least the database server) to a box of its own, and leave the EJBs on a third box in the
middle. Once we've made this step, we can grow each tier to a cluster of serversa cluster of
Tomcat servers, DB servers, and JBoss servers.

Once we move to separate boxes, we need to start making Remote calls to our EJB instead of
local calls. Since our Servlets and EJBs are no longer in the same JVM and memory space, the
container can no longer make calls by reference. It now has to make calls by valuethis is done
by serializing the object, streaming it over the network from one box to the other and
reconstituting it on the other side.

Another reason why you might create remote interfaces is if you are writing a Swing client.
Since your application is truly distributed, your Swing client will need a way to make method
calls on the remote server.

We'll create both local and remote interfaces so you can see what they look like. But
remember YAGNIif you don't have any immediate plans to run on separate boxes, don't do it.
We'll just use local calls in our Servlets for this example.

Before we develop a Stateless Session Bean, let's explore the new directory structure we'll
use for our EJB development environment

6.11.1. Exploring the New Directory Structure

In previous chapters, we had the following sub-directories:

common

Contains code and a build.xml file for building the Common JAR.

sql

Contains a build.xml file for creating the database.

webapp

Contains code and a build.xml file for building the WAR.

If you change to the ch06/ch06-a directory, you'll see that we've added an ejb
sub-directorythis is our EJB development environment. The goal is to keep each portion of the
application as autonomous as possible. Granted, most of the application will have
dependencies on the common sub-project, but by providing individual Ant scripts we have the
opportunity to build each portion of the project separately.

6.11.1.1. The ejb sub-project

Take a moment to explore the ejb sub-project. It has a single classInventoryFacadeBean.
Notice that we've created a new package structure to store all of our EJBs
com.jbossatwork.ejb.

The Ant build script in the ejb sub-directory generates EJB-specific programming artifacts,
compiles the InventoryFacadeBean class, and bundles up everything into an EJB JAR (see the
EJB JAR file section for details). Change to the ch06-a root directory and build the project by
typing ant. Then, change to the ejb/build/distibution directory and type jar tvf ejb.jar to
verify that the Inventory FacadeBean class is indeed stored in ejb.jar.

The main build.xml script in the ch06/ch06-a directory now invokes the ejb sub-directory's
build.xml script to build the EJB JAR. Afterwards, the main build adds the EJB JAR file to the
EAR. We also changed the webapp's build.xml script to include the EJB JAR in its classpath.
Notice that the definition of my.ejb.jar.dir uses a relative path to step up one level from the
basedir of the ejb sub-project and down into the ejb sub-project's build/distribution
directory.

Now that we've shown the EJB development environment, let's start the EJB development
process by showing the Local and Remote Interfaces for the InventoryFacadeBean.

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.12. Local and Remote Interfaces
The Local and Remote Interfaces define the business methods that an EJB exposes to its
clients. These interfaces are sometimes called an EJB's Component Interfaces in EJB books
and other related literature. An EJB's Local and Remote Interface methods serve the same
purpose as public methods for a POJO.

6.12.1. Local Interface

The Local Interface defines an EJB's business methods accessed by local, or co-located,
clients (Servlets, POJOs, or EJB) that run inside the container. When accessing an EJB though
its local interface, there is no overhead for a network call and object serialization because
everything runs in the same JVM. A client running outside the container cannot access a
Session Bean using local interfaces. All methods in the Local Component Interface throw an
EJBException. Our Local Interface, InventoryFacadeLocal, looks like Example 6-9.

Example 6-9. InventoryFacadeLocal.java

package com.jbossatwork.ejb;

public interface InventoryFacadeLocal extends javax.ejb.EJBLocalObject

{

 public java.util.List listAvailableCars() throws javax.ejb.EJBException;

 public CarDTO findCar(int id) throws javax.ejb.EJBException;

 public void deleteCars(String[] ids) throws javax.ejb.EJBException;

 public void saveCar(CarDTO car) throws javax.ejb.EJBException;

 public void buyCar(int carId, double price) throws javax.ejb.EJBException;

}

6.12.2. Remote Interface

The Remote Interface defines an EJB's business methods accessed by remote
clientsapplications that run outside the EJB container. All methods in the Remote Component
Interface throw a RemoteException. Invoking an EJB though its remote interface incurs
overhead for a network call and object serialization because the client and the EJB run in
separate JVMs. Example 6-10 is our Remote Interface, InventoryFacadeRemote.

Example 6-10. InventoryFacadeRemote.java

package com.jbossatwork.ejb;

public interface InventoryFacadeRemote extends javax.ejb.EJBObject

{

 public java.util.List listAvailableCars() throws

javax.ejb.RemoteException;

 public CarDTO findCar(int id) throws javax.ejb.RemoteException;

 public void deleteCars(String[] ids) throws javax.ejb.RemoteException;

 public void saveCar(CarDTO car) throws javax.ejb.RemoteException;

 public void buyCar(int carId, double price) throws

javax.ejb.RemoteException;

}

We've shown the Local and Remote Interfaces that define the EJB's business methods, but
now we need to talk about the Home Interfaces.

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.13. Home Interfaces
An EJB Home Interface is a factory that creates and removes EJB objects in an EJB container.
A Session Bean's create() method initializes a new Session Bean and returns a proxy object
so the client can start using the EJB. An EJB Home is analogous to a POJO's constructor,
except that the EJB Home's create method gives you a client-side proxy rather than a
concrete object. If you use a Local EJB Home, then you're using a Local Interface to call its
business methods. If you look up a Remote EJB Home, then you're working with a Remote
Interface to access a Bean's business methods.

6.13.1. Local Home Interface

The Local Home Interface defines an EJB's lifecycle methodsthat create and remove bean
instancesused by local, or co-located clients (Servlets, POJOs, or EJBs) that run inside the
container. Our Local Home Interface, InventoryFacadeLocalHome, looks like Example 6-11.

Example 6-11. InventoryFacadeLocalHome.java

package com.jbossatwork.ejb;

public interface InventoryFacadeLocalHome extends javax.ejb.EJBLocalHome

{

 public static final String

COMP_NAME="java:comp/env/ejb/InventoryFacadeLocal";

 public static final String JNDI_NAME="InventoryFacadeLocal";

 public com.jbossatwork.ejb.InventoryFacadeLocal create()

 throws javax.ejb.CreateException;

}

This is a Session Bean, so you only need a simple create() method with an empty argument
list.

6.13.2. Remote Home Interface

The Remote Home Interface defines an EJB's lifecycle methodsthat create and remove bean
instancesused by applications outside the container. Example 6-12 is our Remote Home
Interface, InventoryFacadeRemoteHome.

Example 6-12. InventoryFacadeRemoteHome.java

package com.jbossatwork.ejb;

public interface InventoryFacadeRemoteHome extends javax.ejb.EJBHome

{

 public static final String COMP_NAME="java:comp/env/ejb/InventoryFacade";

 public static final String JNDI_NAME="InventoryFacadeRemote";

 public com.jbossatwork.ejb.InventoryFacadeRemote create()

 throws javax.ejb.CreateException,java.rmi.RemoteException;

}

6.13.3. The Bean Class

The Bean Class provides the implementation for a Session Bean's business methods. Our Bean
Class, InventoryFacadeBean, looks like Example 6-13.

Example 6-13. InventoryFacadeBean.java

package com.jbossatwork.ejb;

import java.util.*;

import javax.ejb.*;

import com.jbossatwork.dao.*;

import com.jbossatwork.dto.CarDTO;

public class InventoryFacadeBean implements SessionBean {

 private SessionContext sessionCtx;

 // EJB 2.1 mandated methods.

 public void setSessionContext(SessionContext sessionCtx) throws

EJBException {

 this.sessionCtx = sessionCtx;

 }

 public void ejbCreate() throws CreateException { }

 public void ejbRemove() throws EJBException { }

 public void ejbActivate() throws EJBException { }

 public void ejbPassivate() throws EJBException { }

 // Business methods.

 public List listAvailableCars() throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 return carDAO.filterByStatus(CarDTO.STATUS_AVAILABLE);

 }

 ...

}

Think of the InventoryFacadeBean as an encapsulation of all the inventory-related business
functions. Each business method wraps all the activities to implement a User Story or Use
Case. Consider each business method as a service that's available to clients, such as a web
application, a GUI, or a Web Service client. The listAvailableCars() method tells the CarDAO
to return only the cars that are still available (unsold). The DAO is devoid of any real business
logicit's only responsible for CRUD operations on the CAR table in the database.

In addition to business methods, we must implement the following callback methods because a
Session Bean implements the javax.ejb.SessionBean interface:

 setSessionContext()

 ejbCreate()

 ejbRemove()

 ejbActivate()

 ejbPassivate()

The EJB container calls these methods during an EJB's lifecycle (from creation, invoking
business methods, through removal). With the exception of setSessionContext(), all these
methods are usually empty for Stateless Session Beans. Even though we have only one real
business method, we have to add five other methods (four of which are empty) just to comply
with the EJB specification. These extra methods are inconvenient because they don't add any
real value, but can't deploy our EJB if we don't have them.

We've written the code for the InventoryFacadeBean, and now it's time to deploy the Bean.

6.13.4. EJB Deployment Descriptors

After developing a Session Bean's classes and interfaces, deploy it by adding information
about the EJB (meta-data) to the J2EE standard (ejb-jar.xml) and JBoss (jboss.xml) EJB
deployment descriptors .

In ejb-jar.xml, the <enterprise-beans> element lists all EJBs in the application. The <session>
element describes the bean by telling the container:

 That it's a Session Bean.

 About all the classes that make up the bean.

 That it's Stateless.

 That it uses container-managed transactions (CMT).

 That it uses a Hibernate Session Factory.

Example 6-14 is the ejb-jar.xml file.

Example 6-14. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" version="2.1">

 <enterprise-beans>

 ...

 <session>

 <display-name>InventoryFacadeSB</display-name>

 <ejb-name>InventoryFacade</ejb-name>

 <home>com.jbossatwork.ejb.InventoryFacadeRemoteHome</home>

 <remote>com.jbossatwork.ejb.InventoryFacadeRemote</remote>

 <local-home>com.jbossatwork.ejb.InventoryFacadeLocalHome</local-home>

 <local>com.jbossatwork.ejb.InventoryFacadeLocal</local>

 <ejb-class>com.jbossatwork.ejb.InventoryFacadeBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <resource-ref>

 <res-ref-name>hibernate/SessionFactory</res-ref-name>

 <res-type>org.hibernate.SessionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 </session>

 ...

 </enterprise-beans>

 ...

 <assembly-descriptor>

 ...

 <container-transaction>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>listAvailableCars</method-name>

 <method-params>

 </method-params>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 <container-transaction>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>listAvailableCars</method-name>

 <method-params>

 </method-params>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 ...

 </assembly-descriptor>

</ejb-jar>

The <resource-ref> elements specify the JNDI resources available to the InventoryFacadeBean
(or any POJO that it calls). The <res-ref-name> is the JNDI name for the resource
java:comp/env/hibernate/SessionFactory. Notice that you don't have to specify java:comp/env/
it is the assumed prefix. The <res-type> for the hibernate/SessionFactory is a Hibernate
Session Factory, so org.hibernate.SessionFactory is its fully qualified class name. We want
JBoss to manage our resources, so we set <res-auth> to Container.

The <assembly-descriptor> element describes security constraints, and transactions for all
EJBs in the application. Each <container-transaction> element describes the transactional
environment for every business method for each bean, for both the Remote and Local
component interfaces. The read-only listAvailableCars() method wouldn't normally require a
transaction, but we're using Hibernate 3 and are forced to set the transaction attributed to
Required so that the method is guaranteed to run within a transaction. The "EJB Transaction
Settings" section covers transactions, and later sections discuss Hibernate 3 and its
relationship to EJBs and CMT.

A JNDI resource is linked into an application only if we ask for it. JBoss binds resources under
its in-JVM context, java:/. The jboss.xml file provides a mapping between the J2EE-style ENC
names and the local JBoss-specific JNDI names that JBoss uses to deploy EJBs and any related
JNDI-based resources. Example 6-15 is the jboss.xml descriptor.

Example 6-15. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

 ...

 <enterprise-beans>

 ...

 <session>

 <ejb-name>InventoryFacade</ejb-name>

 <jndi-name>InventoryFacadeRemote</jndi-name>

 <local-jndi-name>InventoryFacadeLocal</local-jndi-name>

 <resource-ref>

 <res-ref-name>hibernate/SessionFactory</res-ref-name>

 <jndi-name>java:/hibernate/SessionFactory</jndi-name>

 </resource-ref>

 <method-attributes>

 </method-attributes>

 </session>

 ...

 </enterprise-beans>

 ...

 <assembly-descriptor>

 </assembly-descriptor>

 ...

 <resource-managers>

 </resource-managers>

</jboss>

All EJBs described in jboss.xml must be defined in ejb-jar.xml. Here are the key elements:

<session>

Provides JBoss-specific deployment information for a session bean, including the JNDI
name.

<ejb-name>

The name of the EJB. This must match the <ejb-name> element for the bean in
ejb-jar.xml.

<jndi-name>

The JNDI name that JBoss uses to deploy the EJB. If not specified, JBoss uses the
<ejb-name> as the JNDI name.

<local-jndi-name>

The JNDI name that JBoss uses to deploy the EJB for local access. If not specified,
JBoss uses the <jndi-name> as the JNDI name. If the deployer provides the
<local-jndi-name>, then the <jndi-name> specifies the remote JNDI name.

The <resource-ref> element enables the InventoryFacadeBean (or any POJO that it calls) to
look up resources using JNDI. As before, <res-ref-name> is the JNDI name for each resource for
which java:comp/env/ is the assumed prefix. The textual value of each <res-ref-name> element
in jboss.xml MUST match the value of the <res-ref-name> in ejb-jar.xml. The <jndi-name> is
the local JBoss-specific JNDI name that JBoss uses to deploy a Hibernate Session Factory.
Since the java:/ ENC is internal to JBoss, the java:/hibernate/SessionFactory JNDI name
indicates that the Hibernate Session Factory is available only to applications running inside of
JBoss.

Now that we have our classes and interfaces in place, let's take a more detailed look at how
EJBs relate to J2EE transactions.

6.13.5. EJB Transaction Settings

The two ways to manage transactions in J2EE are through Container-Managed Transactions
(CMT) and Bean-Managed Transactions (BMT). BMT requires extra Java coding to handle
transaction logic and forces the developer to manage the transaction and define his own
transaction boundaries. In contrast, CMT doesn't require handle transaction logic, pushes
transaction settings into deployment descriptors, uses JBoss transaction services, and
manages transaction boundaries on behalf of the developer. We'll focus on CMT because it is
considered a J2EE best practice and it allows the container to do the work.

A transaction attribute tells the container how to handle CMT transactions for an EJB's
business methods. Specify transaction attributes for each Bean in the ejb-jar.xml deployment
descriptor. You can set transaction attributes for an entire EJB or for each business
methodmethod-level settings take precedence over bean-level settings. Here are the possible
values for EJB transaction settings:

Required

The EJB method always runs within the scope of a transaction. If a transaction doesn't
currently exist, the container starts a new transaction.

RequiresNew

The container always starts a new transaction before executing the EJB method. If a
transaction already exists, the container suspends the current transaction until the
new transaction completes.

Supports

The EJB method runs only within the scope of a transaction if the caller started a
transaction before invoking the EJB method. If a transaction does not already exist,
the EJB method does not run within a transaction.

Mandatory

The caller must start a transaction before invoking the EJB method. If there is no
current transaction, the container throws a javax.ejb.TransactionRequiredException.

NotSupported

The EJB method does not run within the scope of a transaction. If a transaction
already exists, the container suspends the current transaction until the EJB method
completes.

Never

The EJB can not run within the scope of a transaction. If the caller started a
transaction before invoking the EJB method, the container throws a
javax.ejb.RemoteException (for remote calls) or a javax.ejb.EJBException (for local
calls).

Despite the six possible values for EJB transaction settings, you'll use Required, RequiresNew,
or Supports most of the time.

6.13.6. Difficulties Using EJB

At this point, you can deploy the example EJB on JBoss, but the overhead of creating at least
one set of Home and Component Interfaces plus two XML deployment descriptors (ejb-jar.xml
and jboss.xml, including transactional attributes) as well as the business code (the Bean
Class) is tedious and burdensome. Ideally, we'd only have to write the Bean Class and
somehow let deployment take care of itself. Even the Bean Class has issueswe don't care too
much about the callback methods yet, but we're forced to implement them because they're
part of the Session Bean interface.

How Will EJB 3.0 Help?

The main purpose of the EJB 3.0 specification (and J2EE 1.5) is to simplify
deployment and make it easier to develop EJBs. EJB 3.0 will use annotations to
indicate the runtime behavior of an EJB. A Session Bean will require just a business
interface (that declares the EJB's business methods) and a single POJO with EJB
3.0 annotations for deployment. Thus the XML deployment descriptors, along with
the Home and Component Interfaces, will become relics of the past. Although
XDoclet did a great job of generating these artifacts, won't it be great when we
don't have to create them at all? As part of EJB 3.0, you don't have to implement
the SessionBean interface anymore. So your annotated POJO will contain only
business methods and nothing elseyou're no longer forced to implement empty
callback methods that you don't care about.

Dependency Injection is a replacement for JNDI lookups and for declaring resource
and configuration settings in deployment descriptors. Servlets and EJBs will use
annotations to specify their resources and configuration values, and the container
"injects" (or uses) these values. Dependency Injection removes the need for JNDI
lookup and makes your code simpler.

EJB 3.0 will be a huge leap forward, but the specification won't be final until well
after the time of this writing. Although we can't accurately predict the future, we
expect EJB 3.0 to be complete by the end of 2005, and that stable, fully functional
implementations will be available in the first quarter of 2006.

It's important to know about the future, but we're still on EJB 2.1 because the specification
and the JBoss implementation are complete and we know they'll work in a production
environment. For now, we need XDoclet to generate the extra programming artifacts, and we
just have to live with writing empty callback implementations in our Session Beans.

The next section shows how XDoclet generates the bean's deployment descriptors and the
Home and Component Interfaces, freeing you to concentrate on the EJB's business logic.

6.13.7. Automating Stateless Session Bean Deployment Using
XDoclet Tags

Example 6-16 shows the XDoclet tags in InventoryFacadeBean.

Example 6-16. InventoryFacadeBean.java

/**

 * @ejb.bean

 * name="InventoryFacade"

 * display-name="InventoryFacadeSB"

 * local-jndi-name="InventoryFacadeLocal"

 * jndi-name="InventoryFacadeRemote"

 * type="Stateless"

 * transaction-type="Container"

 *

 * @ejb.resource-ref

 * res-ref-name="hibernate/SessionFactory"

 * res-type="org.hibernate.SessionFactory"

 * res-auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="hibernate/SessionFactory"

 * jndi-name="java:/hibernate/SessionFactory"

 *

 */

public class InventoryFacadeBean implements SessionBean {

 ...

 /**

 * @ejb.interface-method

 *

 */

 public List listAvailableCars() throws EJBException {

 ...

 }

 ...

}

The class-level @ejb.bean XDoclet tag defines the EJB and generates the <session> element in
ejb-jar.xml and jboss.xml. The class-level @ejb.resource-ref XDoclet tag generates the
<resource-ref> element for the EJB's Hibernate Session Factory in ejb-jar.xml, and the
@jboss.resource XDoclet tag generates the corresponding <resource-ref> element in jboss.xml
.

Each method-level @ejb.interface-method tag adds a business method to the Remote and
Local component Interfaces.

The XDoclet tags appear in class- and method-level Javadoc comments, and you need to run
an external program to look at the Java code, interpret the tags, and generate code and
deployment descriptors. The next section shows how to run the XDoclet code generator from
Ant.

6.13.8. Ant Build Script Using XDoclet

After modifying the EJB to use XDoclet tags, we now use XDoclet's Ant tasks to generate the
Home and Component Interfaces, along with the EJB deployment descriptors (ejb-jar.xml and
jboss.xml). Example 6-17 shows a portion of the ejb sub-project's Ant build script that uses
XDoclet to generate deployment artifacts.

Example 6-17. ejb/build.xml

 ...

 <target name="run-ejbdoclet" description="Generate EJB artifacts">

 <taskdef name="ejbdoclet"

 classname="xdoclet.modules.ejb.EjbDocletTask"

 classpathref="xdoclet.lib.path"/>

 <mkdir dir="${gen.source.dir}" />

 <ejbdoclet destdir="${gen.source.dir}" ejbspec="2.1">

 <fileset dir="${source.dir}">

 <include name="**/*Bean.java"/>

 </fileset>

 <remoteinterface pattern="{0}Remote"/>

 <localinterface pattern="{0}Local"/>

 <homeinterface pattern="{0}RemoteHome"/>

 <localhomeinterface pattern="{0}LocalHome"/>

 <deploymentdescriptor destdir="${gen.source.dir}"/>

 <jboss version="4.0" destdir="${gen.source.dir}"/>

 </ejbdoclet>

 </target>

 ...

The run-ejbdoclet invokes XDoclet's <ejbdoclet> Ant task to generate the bean interfaces and
deployment descriptors. Here are the important attributes and sub-elements of <ejbdoclet>:

<ejbdoclet>

This task generates the deployment descriptors, along with the Home and Component
Interfaces for all EJBs that contain XDoclet tags. The most important attributes are:
destdir (where to output the generated Home and Component Interfaces) and ejbspec
(the version of the EJB specification to usedefaults to "2.0").

<fileset>

Tells XDoclet where to find the Bean Class files to parse.

<remoteinterface>

Tells XDoclet to generate a Remote Component Interface for all EJBs.

<localinterface>

Tells XDoclet to generate a Local Component Interface for all EJBs.

<remotehomeinterface>

Tells XDoclet to generate a Remote Home Interface for all EJBs.

<localhomeinterface>

Tells XDoclet to generate a Local Home Interface for all EJBs.

<deploymentdescriptor>

Tells XDoclet to generate the standard J2EE ejb-jar.xml deployment descriptor. The
destdir attribute tells where to output ejb-jar.xml.

<jboss>

Tells XDoclet to generate the JBoss-specifiec jboss.xml deployment descriptor. The
most important attributes here are version (the JBoss version we're using) and destdir
(where to output jboss.xml).

Now that we have all of the EJB-related pieces in place, let's JAR everything up.

6.13.9. EJB JAR File

An EJB JAR file is the standard deployment unit for the EJB component (EJBs, JMS
Destinations, and so on) portion of a J2EE application. It contains ejb-jar.xml (the J2EE
standard EJB deployment descriptor), jboss.xml (the JBoss-specific EJB deployment
descriptor), the EJB classes, and a JAR manifest. We deploy the example EJB JAR file inside an
EAR file alongside the WAR file containing the Controller Servlet that invokes the
InventoryFacade EJB. See Figure 6-1 for the structure of the EJB JAR file.

Figure 6-1. EJB JAR file structure

The EJB JAR file above has the following structure:

 The root directory. Some applications may store property files in the root directory.

 The META-INF directory that contains all the metadata: ejb-jar.xml, jboss.xml, and the
JAR Manifest file that references external JARS that reside in the application EAR file.
The Deployment Chapter has more information on EAR files, JAR Manifest files, and
ClassLoaders.

 The com/jbossatwork/ejb directory holds EJB class files.

Now that we know the structure of the EJB JAR file, let's use Ant to create the JAR file.

6.13.10. Ant Task for Creating EJB JAR

Example 6-18 is another portion of the ejb sub-project's Ant build script that creates the EJB
JAR file.

Example 6-18. ejb/build.xml

...

 <target name="build-ejb-jar" depends="run-ejbdoclet, compile"

 description="Packages the EJB files into a EJB JAR file">

 <mkdir dir="${distribution.dir}" />

 <jar destfile="${distribution.dir}/${ejb.jar.name}"

 basedir="${classes.dir}">

 <metainf dir="${gen.source.dir}" includes="*.xml"/>

 </jar>

 </target>

 ...

The <build-ejb-jar> target depends on the run-ejbdoclet (from the previous Ant code
example) to generate all the EJB-related programming artifacts and the compile target to
compile all the code. The <jar> task creates the EJB JAR file (ejb.jar) and copies the
compiled Bean Class, along with the Home and Component Interfaces, into the JAR file
(preserving the package directory structure). The <jar> task also copies the EJB deployment
descriptors (ejb-jar.xml and jboss.xml) into the JAR's META-INF directory. So there's no real
"magic" to creating an EJB JAR filethe <jar> task above looks similar to something you've seen
before. The only real difference between a plain JAR file and the EJB JAR file is that you have
deployment descriptors in the META-INF directory.

Now that we have our EJB JAR, let's include it in our EAR.

6.13.11. Adding an EJB JAR to the EAR

We've already covered the structure and contents of an EAR file in the Deployment chapter.
Here are the steps to add the EJB JAR file to the EAR:

 Register the EJB JAR file in application.xml.

 Copy the EJB JAR file into the EAR.

Example 6-19 is a portion of the application.xml file that now includes the new EJB JAR file,
ejb.jar.

Example 6-19. application.xml

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

 version="1.4">

 <display-name>JBossAtWorkEAR</display-name>

 <module>

 <web>

 <web-uri>webapp.war</web-uri>

 <context-root>ch06</context-root>

 </web>

 </module>

 ...

 <module>

 <ejb>ejb.jar</ejb>

 </module>

 ...

</application>

As we've seen in previous chapters, the <module> element defines a J2EE module (WAR, EJB
JAR, and JAR) contained in the EAR. The <ejb> element specifies the EJB JAR file name relative
to the EAR file's top-level directory.

Adding the EJB JAR file to the EAR is trivial. Example 6-20 shows a portion of the main Ant
build script (ch06-a/build.xml) that creates the EAR.

Example 6-20. build.xml

 ...

 <ear destFile="${distribution.dir}/${ear.name}"

 appxml="${meta-inf.dir}/application.xml">

 <fileset dir="${ejb.jar.dir}"/>

 <fileset dir="${webapp.war.dir}"/>

 <fileset dir="${common.jar.dir}"/>

 ...

 </ear>

 ...

We've seen the <ear> task before. The only difference is that now we're copying the EJB JAR
file into the EAR by adding a <fileset> task that includes the EJB JAR file.

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
http://www.processtext.com/abcchm.html

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.14. Reviewing Iteration 1
It's taken a while to get here, but we now have the core infrastructure in place to use EJBs.
The main purpose of Iteration 1 was to introduce an EJB to the JAW Motors application. So, to
review :

 We modified the Persistence Tier so that we can tell if a car is available or sold by:

o Adding a STATUS column to the CAR table.

o Making the CarDTO Serializable, and adding a status field along with getter
and setter methods.

o Adding a filterByStatus() method to the HibernateCarDAO.

 We upgraded the web site by:

o Refactoring the Controller Servlet's viewCarList action to use the
InventoryFacadeBean for finding all available (unsold) cars.

o Adding a getEjbLocalHome() method to the ServiceLocator to look up an EJB's
Local Home Interface using JNDI.

o Adding EJB-based JNDI reference settings to the Web deployment descriptors (
web.xml and jboss-web.xml).

o Automating EJB-based JNDI reference settings in the Web deployment
descriptors with XDoclet.

 We added InventoryFacade Session Bean by:

o Defining the Local and Remote Interface(s).

o Creating the Home Interface(s).

o Developing the Bean Class Code.

o Deploying the Bean with EJB deployment descriptors.

o Automating the Bean deployment with Ant and XDoclet so that XDoclet created
the Remote, Remote Home, Local, and Local Home interfaces for us. We also
used XDoclet to create the ejb-jar.xml and jboss.xml deployment descriptors.

 We added EJBs to our EAR file by:

o Creating the EJB JAR file with Ant.

o Registering the EJB JAR file in application.xml.

o Copying the EJB JAR file into the EAR.

As you've just seen, adding EJBs to a J2EE application is non-trivial. But you can mitigate this
overhead with Ant and XDoclet.

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.15. Testing Iteration 1
Now that we've written and deployed an EJB and called it from the Controller Servlet, let's
test the application to ensure that everything still works properly. Here are the steps to build
and deploy the application:

 Type ant in the root directory of ch06-a to build the project.

 Shutdown JBoss so that the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Go to the ch06-a/sql sub-directory and type ant to modify the database.

 Visit http://localhost:8080/jaw in a web browser.

When you click on the "View Inventory" link on the JAW Motors home page, the Controller
Servlet takes you to the Inventory page where you can view, add, edit, or delete cars in JAW
Motors' Inventory.

We've spent a lot of time in Iteration 1 establishing the core infrastructure for using EJBs in
the application, and now we'll move on to Iterations 2 and 3, where we'll move the business
logic from the Web Tier to the EJB, and then finally add the ability to buy a car. Since we
have all the plumbing in place, these next two Iterations will be much shorter than the first.

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://www.processtext.com/abcchm.html
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.16. Iteration 2Move Business Logic Out of the
Controller
In this Iteration, we're going to move all business logic out of the Controller Servlet into the
InventoryFacadeBean (which groups our synchronous activities together and wraps the DAO).
We'll take the following steps:

 Move the code from the Controller Servlet's actions into the InventoryFacadeBean.

 Modify the Controller Servlet to call the new methods in the InventoryFacadeBean.

 Modify the HibernateCarDAO to work with CMT.

 Change the ServiceLocator's getHibernateSession() method to work with CMT.

6.16.1. Refactoring the Business Logic

If you'll recall from earlier in this chapter, we had modified the Controller Servlet so its
viewCarList action used the InventoryFacadeBean to find all available cars. We will now
refactor the Controller Servlet by moving all the business logic from its actions into the
InventoryFacadeBean. Example 6-21 shows the modifications to the Controller Servlet.

Example 6-21. ControllerServlet.java

package com.jbossatwork;

...

import com.jbossatwork.ejb.*;

...

import javax.ejb.*;

...

public class ControllerServlet extends HttpServlet

{

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException

 {

 ...

 InventoryFacadeLocalHome inventoryHome;

 inventoryHome = (InventoryFacadeLocalHome)

 ServiceLocator.getEjbLocalHome(InventoryFacadeLocalHome.COMP_NAME);

 InventoryFacadeLocal inventory = null;

 try {

 inventory = inventoryHome.create();

 } catch (CreateException ce) {

 throw new RuntimeException(ce.getMessage());

 }

 // perform action

 if (VIEW_CAR_LIST_ACTION.equals(actionName))

 {

 request.setAttribute("carList", inventory.listAvailableCars());

 destinationPage = "/carList.jsp";

 }

 else if (ADD_CAR_ACTION.equals(actionName))

 {

 request.setAttribute("car", new CarDTO());

 destinationPage = "/carForm.jsp";

 }

 else if (EDIT_CAR_ACTION.equals(actionName))

 {

 int id = Integer.parseInt(request.getParameter("id"));

 request.setAttribute("car", inventory.findCar(id));

 destinationPage = "/carForm.jsp";

 }

 else if (SAVE_CAR_ACTION.equals(actionName))

 {

 // build the car from the request parameters

 CarDTO car = new CarDTO();

 car.setId(Integer.parseInt(request.getParameter("id")));

 car.setMake(request.getParameter("make"));

 car.setModel(request.getParameter("model"));

 car.setModelYear(request.getParameter("modelYear"));

 // save the car

 inventory.saveCar(car);

 // prepare the list

 request.setAttribute("carList", inventory.listAvailableCars());

 destinationPage = "/carList.jsp";

 }

 else if (DELETE_CAR_ACTION.equals(actionName))

 {

 // get list of ids to delete

 String[] ids = request.getParameterValues("id");

 // delete the list of ids

 inventory.deleteCars(ids);

 // prepare the list

 request.setAttribute("carList", inventory.listAvailableCars());

 destinationPage = "/carList.jsp";

 }

 ...

 }

}

So, rather than making DAO calls directly from the Controller Servlet, we're now calling the
InventoryFacadeBean to execute the business logic. Let's show the changes in the
InventoryFacadeBean(Example 6-22).

Example 6-22. InventoryFacadeBean.java

package com.jbossatwork.ejb;

import java.util.*;

import javax.ejb.*;

import com.jbossatwork.dao.*;

import com.jbossatwork.dto.CarDTO;

public class InventoryFacadeBean implements SessionBean {

 ...

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Required"

 *

 */

 public List listAvailableCars() throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 return carDAO.filterByStatus(CarDTO.STATUS_AVAILABLE);

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Required"

 *

 */

 public CarDTO findCar(int id) throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 return carDAO.findById(id);

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Required"

 *

 */

 public void deleteCars(String[] ids) throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 if (ids != null) {

 carDAO.delete(ids);

 }

 }

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Required"

 *

 */

 public void saveCar(CarDTO car) throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 if (car.getId() = = -1) {

 carDAO.create(car);

 } else {

 carDAO.update(car);

 }

 }

}

Again, there isn't anything too exciting going on here. We've taken all the DAO-related code
from the Controller Servlet and created new methods in the InventoryFacadeBean:

findCar()

Finds a car based on the caller-supplied Car ID.

deleteCars()

Deletes one or more cars based on the array of caller-supplied Car IDs.

saveCar()

Creates the Car if it doesn't exist in the database; updates the Car if it's already in the
database.

Notice that even the read-only methods (listAvailableCars() and findCar()) require a
transaction. We need run inside a transaction because of how we're getting the Hibernate
Sessionthis is a new wrinkle introduced with Hibernate 3. Each method-level @ejb.transaction
tag sets the transaction attribute for an EJB's business method in ejb-jar.xml. We'll cover
Hibernate 3 and CMT in the next couple of sections.

You may be wondering why we've taken the trouble to factor our business logic out of the
Controller Servlet into a Session Bean. We refactored for a couple of reasons:

 Running our code from within an EJB enables us to use Container-Managed
Transactions (CMT), and you'll see in the next section that this greatly reduces the
amount of code you have to write.

 We may not always have a web client and we'd like to encapsulate our business logic
so other clients can use our services. In the Web Services chapter, we'll expose one of
the InventoryFacadeBean's methods as a Web Service.

We could've gone one step further and factored all the business logic in the
InventoryFacadeBean into another POJO known as an Application Service, a Core J2EE Pattern.
If set up correctly, an Application Service enables you to test your business logic outside of
JBoss. But since this isn't a JUnit book, we leave this refactoring to the reader.

6.16.2. Hibernate 3 and CMT

Until now, we've managed Hibernate transactions programmatically. Now that we're inside an
EJB and using CMT, we don't have to perform user-managed transactions in Hibernate
anymore. Now that the container manages transactions for us, we can remove the Hibernate
API calls that set up and tear down our transactions. Example 6-23 contains the original
HibernateCarDAO's (first introduced in Chapter 5) read-only findById() method that closed its
Hibernate Session and the update() method that managed its own transaction.

Example 6-23. HibernateCarDAO.java

...

public class HibernateCarDAO implements CarDAO

{

 ...

 public CarDTO findById(int id)

 {

 CarDTO car = null;

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 car = (CarDTO) session.get(CarDTO.class, new Integer(id));

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 return car;

 }

 ...

 public void update(CarDTO car)

 {

 Session session = null;

 Transaction tx = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 tx = session.beginTransaction();

 session.update(car);

 tx.commit();

 }

 catch (Exception e)

 {

 try{tx.rollback();}

 catch(Exception e2){System.out.println(e2);}

 System.out.println(e);

 }

 finally

 {

 try

 {

 if (session != null) {session.close();}

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 }

 ...

}

Most of the code is concerned with transaction and session setup and tear down. Now let's
look at the new HibernateCarDAO that uses Container-Managed Transactions in Example 6-24.

Example 6-24. HibernateCarDAO.java

...

public class HibernateCarDAO implements CarDAO

{

 private List carList;

 private static final String HIBERNATE_SESSION_FACTORY =

 "java:comp/env/hibernate/SessionFactory";

 public HibernateCarDAO(){ }

 public List findAll()

 {

 List carList = new ArrayList();

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 Criteria criteria = session.createCriteria(CarDTO.class);

 carList = criteria.list();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 return carList;

 }

 public List filterByStatus(String status)

 {

 List availableCarList = new ArrayList();

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 Criteria criteria = session.createCriteria(CarDTO.class)

 .add(Restrictions.eq("status", status));

 availableCarList = criteria.list();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 return availableCarList;

 }

 public CarDTO findById(int id)

 {

 CarDTO car = null;

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 car = (CarDTO) session.get(CarDTO.class, new Integer(id));

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 return car;

 }

 public void create(CarDTO car)

 {

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 session.save(car);

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 public void update(CarDTO car)

 {

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 session.update(car);

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 public void delete(String[] ids)

 {

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 for (int i = 0; i < ids.length; i++)

 {

 CarDTO car = (CarDTO) session.get(CarDTO.class,

 new Integer(ids[i]));

 session.delete(car);

 }

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

}

You should notice the following differences in the new HibernateCarDAO:

 The read-only methods no longer need to close their Session, resulting in a 1/3
reduction in the lines of code.

 The transactional methods no longer use the Hibernate transaction API calls, nor do
they close their Session. These changes reduce the code by 50 percent. The
transactional methods don't close the Session anymore because you lose your changes
if you perform an update or delete operation and then close the Session.

 Most importantly, the business purpose of the code is clearer.

We've retrofitted the HibernateCarDAO so it works with Container-Managed Transactions, but
you're not done yet. We also have to modify how we're getting the Hibernate Session in the
ServiceLocator's getHibernateSession() method. Previously, we called openSession(), as in
Example 6-25.

Example 6-25. ServiceLocator.java

 ...

public class ServiceLocator {

 ...

 public static Session getHibernateSession(String jndiSessionFactoryName)

 throws ServiceLocatorException {

 Session session = null;

 ...

 session = getHibernateSessionFactory(jndiSessionFactoryName)

 .openSession();

 ...

 return session;

 }

 ...

}

To work within a transaction, we had to modify the getHibernateSession() method, as in
Example 6-26.

Example 6-26. ServiceLocator.java

...

public class ServiceLocator {

 ...

 public static Session getHibernateSession(String jndiSessionFactoryName)

 throws ServiceLocatorException {

 Session session = null;

 ...

 session = getHibernateSessionFactory(jndiSessionFactoryName)

 .getCurrentSession();

 ...

 return session;

 }

 ...

}

So, rather than using the Session Factory's openSession() method to open a new Session, we
call the getCurrentSession() method to get the Session that's part of the current
transactional context managed by the container. Your code must run within a transaction, or
the Session Factory's getCurrentSession() method will throw a NullPointerExceptionthat's
why each of the InventoryFacadeBean's methods had a transaction setting of Required.

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.17. Reviewing Iteration 2
In Iteration 2, we moved all business logic out of the Controller Servlet into the
InventoryFacadeBean (which groups our synchronous activities and wraps the DAO). We took
the following steps:

 Moved the business logic from the Controller Servlet's actions into the
InventoryFacadeBean.

 Modified the Controller Servlet to call the new methods in the InventoryFacadeBean.

 Modified the HibernateCarDAO to work with CMT by removing the transaction setup and
tear down code. We also removed the code that closes Hibernate Sessions.

 Changed the ServiceLocator's getHibernateSession() method to work with CMT by
calling the SessionFactory's getCurrentSession() method.

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.18. Testing Iteration 2
Now that we've moved all business logic from Controller Servlet to the InventoryFacadeBean,
let's test our application to ensure that everything still works properly. Here are the steps to
build and deploy the application:

 Type ant in the root directory of ch06-b to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

When you click on the "View Inventory" on the JAW Motors home page, the Controller Servlet
takes you to the Inventory page where you can view, add, edit, or delete cars in JAW Motors'
Inventory.

Now that we have all the infrastructure in place, let's move on to Iteration 3 where we finally
add the ability to buy a car.

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://www.processtext.com/abcchm.html
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.19. Iteration 3Buy a Car
In this Iteration, we're going to enable a user to buy a car from the JAW Motors web site.
We'll add a new page to enable the user to buy a car. When the user presses the "Submit"
button on the new "Buy Car" page, the business logic changes the car's status to "Sold" and
inserts a new row into the ACCOUNTING table.

We'll take the following steps:

 Upgrade the web site:

o Add a "Buy Car" link to the Car Inventory page (carList.jsp).

o Add a "Buy Car" action to the Controller Servlet.

 Modify the Persistence Tier:

o Create an ACCOUNTING table.

o Write a HibernateAccountingDTO.

o Develop a HibernateAccountingDAO.

 Change the Session Bean:

o Add a new buyCar() method to the InventoryFacadeBean that encapsulates a
Container-Managed Transaction that involves both the CAR and ACCOUNTING
tables.

6.19.1. Upgrade the Web Site: Adding a "Buy Car" Link

We've added a "Buy Car" link to the JAW Motors Car Inventory page (carList.jsp) as shown
in Figure 6-2.

Figure 6-2. JAW Motors Inventory Page

When the user clicks on the "Buy" link, the Controller routes them to the Buy Car page as
depicted in Figure 6-3 so they can buy the car.

The user enters her price in the form and presses the "Save" button. The Controller Servlet
then takes the user back to the Car Inventory page. The purchased car is no longer available,
so it won't show up on the Car Inventory page.

Figure 6-3. JAW Motors Buy Car Page

Now that the web pages are done, we have to add actions to the Controller Servlet for buying
a car. Example 6-27 shows the changes.

Example 6-27. ControllerServlet.java

public class ControllerServlet extends HttpServlet

{

 ...

 private static final String VIEW_BUY_CAR_FORM_ACTION = "viewBuyCarForm";

 private static final String BUY_CAR_ACTION = "buyCar";

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 ...

 else if (VIEW_BUY_CAR_FORM_ACTION.equals(actionName))

 {

 int id = Integer.parseInt(request.getParameter("id"));

 request.setAttribute("car", inventory.findCar(id));

 destinationPage = "/buyCarForm.jsp";

 }

 else if (BUY_CAR_ACTION.equals(actionName))

 {

 int carId = Integer.parseInt(request.getParameter("id"));

 double price;

 // Use $5000.00 as the default price if the user enters bad data.

 try

 {

 price = Double.parseDouble(request.getParameter("price"));

 }

 catch (NumberFormatException nfe)

 {

 price = 5000.00;

 }

 System.out.println("carId = [" + carId + "], price = [" + price +

"]");

 // mark the car as sold

 inventory.buyCar(carId, price);

 // prepare the list

 request.setAttribute("carList", inventory.listAvailableCars());

 destinationPage = "/carList.jsp";

 }

 ...

 }

 ...

}

As shown in the web pages, pressing the "Buy" link on the Car Inventory page invokes the
viewBuyCarForm action, and the Controller Servlet routes the user to the "Buy Car" Form.
Pressing the "Submit" button from the form invokes the buyCar action, and the Controller
Servlet captures the user's price and calls the InventoryFacadeBean's buyCar() method to
change the car's status to "Sold" and insert a new row into the ACCOUNTING table to record the
sale. The Controller then gets the current list of available (unsold) cars and routes the user to
the Car Inventory page.

Now that we've upgraded the web site, let's start modifying the Persistence Tier by adding
the new ACCOUNTING table.

6.19.2. Creating the ACCOUNTING Table

The new ACCOUNTING table keeps track of the cars we've sold. Example 6-28 is the SQL in
ch06-c/sql/build.xml that creates the table:

Example 6-28. sql/build.xml

DROP TABLE IF EXISTS ACCOUNTING;

CREATE TABLE ACCOUNTING (

 ID BIGINT identity,

 CAR_ID BIGINT,

 PRICE DOUBLE,

 SALE_DATE DATE

);

Due to the CAR_ID column, the ACCOUNTING table depends on the CAR table, but we're not going
to complicate things by adding foreign key constraints.

We've created the ACCOUNTING table, so let's add the corresponding AccountingDTO.

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.20. The AccountingDTO
The AccountingDTO is an object that Hibernate persists to the ACCOUNTING table. The
AccountingDTO has four fields: id, carId, price, and a saleDate. The AccountingDTO has getter
and setter methods for each data member, along with XDoclet tags telling the <hibernate>
XDoclet task how to generate an HBM mapping file that maps between the AccountingDTO
object and the ACCOUNTING table. The AccountingDTO looks very similar to the CarDTO from
previous chapters, so we're not showing the code here. If you want to see the AccountingDTO
code, you can find it in the com.jbossatwork.dto package under the common sub-directory.

We've created the AccountingDTO, so now we need to develop the HibernateAccountingDAO to
persist the AccountingDTO to the ACCOUNTING table.

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.21. Developing the HibernateAccountingDAO
The HibernateAccountingDAO looks similar to the HibernateCarDAO, but instead of writing all the
CRUD, we only need to insert a row into the ACCOUNTING table. Here, we have only a single
create() method. Example 6-29 shows the code for the HibernateAccountingDAO.

Example 6-29. HibernateAccountingDAO.java

package com.jbossatwork.dao;

import java.util.*;

import org.hibernate.*;

import org.hibernate.criterion.*;

import com.jbossatwork.dto.AccountingDTO;

import com.jbossatwork.util.*;

public class HibernateAccountingDAO implements AccountingDAO

{

 private static final String HIBERNATE_SESSION_FACTORY =

 "java:comp/env/hibernate/SessionFactory";

 public HibernateAccountingDAO() { }

 public void create(AccountingDTO accountingData)

 {

 Session session = null;

 try

 {

 session = ServiceLocator.getHibernateSession(

 HIBERNATE_SESSION_FACTORY);

 session.save(accountingData);

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 }

 }

The create() method calls the ServiceLocator to get the Hibernate Session, and inserts a
new row into the ACCOUNTING table by calling the Session's save() method for the
AccountingDTO. Just like we did before, we let the container manage the transaction, and we're
not closing the Session.

We've added all the infrastructure to the web site and the Persistence Tier so we can buy a
car. We now wrap up by adding a buyCar() method to the InventoryFacadeBean.

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.22. Adding buyCar() to the InventoryFacadeBean
Example 6-30 is the InventoryFacadeBean's buyCar() method.

Example 6-30. InventoryFacadeBean.java

...

public class InventoryFacadeBean implements SessionBean {

 ...

 /**

 * @ejb.interface-method

 * @ejb.transaction

 * type="Required"

 *

 */

 public void buyCar(int carId, double price) throws EJBException {

 CarDAO carDAO = new HibernateCarDAO();

 CarDTO car;

 AccountingDAO accountingDAO = new HibernateAccountingDAO();

 AccountingDTO accountingData;

 car = carDAO.findById(carId);

 car.setStatus(CarDTO.STATUS_SOLD);

 carDAO.update(car);

 accountingData = new AccountingDTO(carId, price);

 accountingDAO.create(accountingData);

 }

 ...

}

The buyCar() method encapsulates a transaction for buying a car. This method takes the
carId and price supplied by the caller to mark a car as "Sold" in the CAR table and record the
sale in the ACCOUNTING table. If either the update to the CAR table or the ACCOUNTING table fails,
the container rolls everything back. If all activities complete successfully, then all changes are
committed to the database. After instantiating the DAOs, we use the CarDAO to find the car
using the carId. To mark the car as "Sold", we set the CarDTO's status to "Sold" and call the
HibernateCarDAO's update() method to update the car's status in the CAR table. To record the
sale, we instantiate a new AccountingDTO with the carId and price, and then call the
HibernateAccountingDAO's create() method to insert a new row in the ACCOUNTING table.

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.23. Reviewing Iteration 3
Before moving on to test buying a car, let's recap what we did in Iteration 3:

 Upgraded the web site:

o Added a "Buy Car" link to the Car Inventory page (carList.jsp).

o Added a "Buy Car" action to the Controller Servlet.

 Modified the Persistence Tier:

o Created an ACCOUNTING table.

o Wrote a HibernateAccountingDTO.

o Developed a HibernateAccountingDAO.

 Changed the Session Bean:

o Added a new buyCar() method to the InventoryFacadeBean that encapsulated a
Container-Managed Transaction that involved the CAR and ACCOUNTING tables.

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.24. Testing Iteration 3
Now that we've developed all the code and infrastructure for buying a car, let's test the
application to ensure that everything works properly. Here are the steps to build and deploy
the application:

 Type ant in the root directory of ch06-c to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Go to the ch06-c/sql sub-directory and type ant to modify the database.

 Visit http://localhost:8080/jaw in a web browser.

When you click on the "View Inventory" on the JAW Motors home page, the Controller Servlet
takes you to the Inventory page where you can view, add, edit, delete, or buy cars in JAW
Motors' Inventory. Click on one of the "Buy" links and the Controller will route you to the Buy
Car page. Enter a price in the form and press the "Save" button. The Controller Servlet then
takes you back to the Car Inventory page. The car that was just purchased is no longer
available, so it won't show up on the Car Inventory page.

As a final test, we need to ensure that the transaction was recorded properly in the
database. Go to the ch06-c/sql sub-directory and type: "ant query". The query target queries
the CAR and ACCOUNTING tables. Depending on which car you bought, you should see something
like this on the command console:

query:

 [echo] Checking the CAR and ACCOUNTING tables ...

 [sql] Executing commands

 [sql] ID,MAKE,MODEL,MODEL_YEAR,STATUS

 [sql] 99,Toyota,Camry,2005,Sold

 [sql] 100,Toyota,Corolla,1999,Available

 [sql] 101,Ford,Explorer,2005,Available

 [sql] 0 rows affected

 [sql] ID,CAR_ID,PRICE,SALE_DATE

 [sql] 0,99,12000.0,2005-06-01

 [sql] 0 rows affected

 [sql] 2 of 2 SQL statements executed successfully

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.25. Final Thoughts on Session Beans
EJBs are the foundation for the rest of this book, so we took a lot of time to explain when and
when not to use them, and how to deploy them. Here are the key take-away points on EJBs.

 Use EJBs when you really need them.

 Know why you're using EJBs.

 We use Stateless Session Beans for managing transactions and Message-Driven Beans
for asynchronous processing.

 EJBs require a lot of extra work, but you only have to do the setup once:

o Adding a new EJB Ant build script that uses XDoclet and creates the EJB JAR
file.

o Referencing the EJB JAR in application.xml.

o Adding the EJB JAR file to the EAR.

 After the initial setup, things get better. The extra programming artifacts required by
EJB 2.1 (Home and Component Interfaces and the deployment descriptors) are tedious
and error-prone, but you can generate everything with XDoclet.

 Under EJB 2.1, you still have to implement the callback methods by hand.

 With EJB 3.0, the programming artifacts and callback methods go away. So, you're left
with a business interface and a simple POJO that contains only the business methods
that you care about. EJB 3.0 will streamline EJB development and deployment. We hope
that a simpler EJB spec will encourage developers and architects to consider EJBs for
their future needs when it makes sense to use them.

 We moved our business logic from the Controller Servlet into the InventoryFacade
Stateless Bean for the following reasons:

o Running our code from within an EJB enables us to use Container-Managed
Transactions (CMT), which greatly reduces the amount of code you have to
write.

o Since we may not always have a web client, we want other types of clients to
use our encapsulated business logic as services. We can expose some of the
InventoryFacadeBean's methods as Web Serviceswe'll show you how to do this in
the Web Services chapter.

 When using Hibernate 3 from within an EJB that uses CMT, remember to do the
following:

o Make sure that your EJB method runs within the scope of a transaction.

o Get a Hibernate Session by using the Session Factory's getCurrentSession()
method.

o The Hibernate transaction API calls are no longer needed because the container
manages the transactions.

o Never close your Hibernate Session because doing this loses your changeslet
the container do it for you.

 The InventoryFacadeBean's buyCar() method encapsulated a Container-Managed
Transaction that involved both the CAR and ACCOUNTING tables.

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.26. Looking Ahead ...
This chapter discussed reasons for and against using EJBs. We added the ability to buy a car
on the JAW Motors web site by introducing an InventoryFacade Stateless Session Bean that
encapsulates business logic and uses CMT to manage transactions. Along the way, we
introduced expected improvements with EJB 3.0, showed the relationship between Hibernate 3
and CMT, and deployed our new Session Bean on JBoss.

In the next chapter, we'll add an MDB to the JAW Motors Application.

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 7. Java Message Service (JMS)
and Message-Driven Beans
If you've worked through all the previous chapters, you have a fully functional vertical slice of
the JAW Motors application that allows you to view, add, edit (update), delete, and buy cars.
JAW Motors now wants to run a credit check on potential customers to pre-qualify them for
car loans as part of the auto buying process. Like many other businesses, JAW Motors doesn't
do its own credit verification and uses an external online service to run a credit check. Once
we add a form to the JAW Motors web site to verify someone's credit, what happens when
they enter their credit information and press the submit button? Should we make them wait
until the external service finishes? This process could take several minutes, hours, or even
days. Making the user wait around for the final result is unacceptable. After pressing the
submit button, the user should be free to go back to what they were doingviewing, adding,
editing, and deleting cars. We need a way to defer the credit verification process to the
background so the user can continue using the web site.

J2EE provides the following mechanisms for deferring work to the background:

 JMS (Java Message Service)

 Message-Driven Beans (MDBs)

The JMS API provides a vendor-neutral standard programming interface for creating, sending,
and receiving messages. JMS enables Java applications to asynchronously exchange messages
containing data and events. JMS 1.1 is part of the J2EE 1.4 standard.

Message-Driven Beans (MDBs) are EJBs that receive and process JMS messages. MDBs don't
maintain state between invocations, so they resemble Stateless Session Beans. But MDBs
differ from Stateless Session Beans in that:

 A client is completely decoupled from an MDBthe client sends a JMS message and the
MDB picks up the message.

 After sending a JMS asynchronously, the client doesn't wait for the MDB to receive the
message. The client continues executing other business logic.

Enterprise-class applications usually defer processing slow, expensive operations to run in the
background so clients don't have to wait for completion. A UI sends an asynchronous JMS
message, and an MDB receives the message and process it while the client can do other
things in the foreground, such as interact with your application's web pages. On completion,
the MDB could notify the client with a confirmation email, send another message, or update
the database.

This chapter covers JMS and Message-Driven Beans. We'll upgrade the JAW Motors application
by adding the ability to run a credit check on a customer by using JMS messaging and an
MDB. To set realistic expectations, we won't invoke a real credit verification service, but
instead will emulate the credit check as a long-running process. Along the way, we'll show
how to deploy these technologies on JBoss.

Let's start by working down through the architecture.

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.1. Sending Messages with JMS
To send JMS messages from the JAW Motors application, do the following:

 Upgrade the web site:

o Add a "Run Credit Check" link and form.

o Add a "Run Credit Check" action to the Controller Servlet.

 Add JMS:

o Create an object that holds the user's credit information to send as a JMS
message.

o Write a utility class to encapsulate sending a JMS message.

o Add JMS-based JNDI reference settings to the Web-based deployment
descriptors (web.xml and jboss-web.xml).

o Automate JMS-based JNDI reference settings with XDoclet.

o Deploy a JMS Queue on JBoss with an MBean.

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.2. Upgrade the Site: Running a Credit Check
We've added a "Run Credit Check" link to the JAW Motors homepage, as shown in Figure 7-1.

Figure 7-1. JAW Motors homepage

When the user clicks on the "Run Credit Check" link, the Controller routes them to the Run
Credit Check page as depicted in Figure 7-2.

Figure 7-2. JAW Motors Run Credit Check page

The user enters his name, Social Security Number (SSN), and email address in the form and
presses the "Submit Credit Info" button. When a customer requests a credit check, he won't
have to wait for the external credit verification process to complete. The Controller Servlet
sends a JMS message asynchronously to back end components that process business logic for
the request. The customer gets routed back to the JAW Motors home page and is then free to
continue using the JAW Motors web site while the credit check completes in the background.

Now that the web pages are done, we have to add actions to the Controller Servlet for
running the credit check. Example 7-1 shows the changes.

Example 7-1. ControllerServlet.java

public class ControllerServlet extends HttpServlet

{

 ...

 private static final String VIEW_CREDIT_CHECK_FORM_ACTION =

 "viewCreditCheckForm";

 private static final String RUN_CREDIT_CHECK_ACTION = "runCreditCheck";

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 ...

 else if(VIEW_CREDIT_CHECK_FORM_ACTION.equals(actionName))

 {

 destinationPage = "/creditCheckForm.jsp";

 }

 else if(RUN_CREDIT_CHECK_ACTION.equals(actionName))

 {

 System.out.println("Credit Check:\nName = [" +

 request.getParameter("name") + "]");

 System.out.println("SSN = [" + request.getParameter("ssn") + "]");

 System.out.println("Email = [" + request.getParameter("email") +

"]");

 destinationPage = "/index.jsp";

 }

 ...

 }

 ...

}

As shown in the web pages, pressing the "Run Credit Check" link on the main page invokes
the viewCreditCheckForm action, and the Controller Servlet routes the user to the "Run Credit
Check" Form. Pressing the "Submit Credit Info" from the form invokes the runCreditCheck
action, and (for now) the Controller Servlet captures the user's credit information and returns
them to the main page. Now that we've built the user interface and have the infrastructure in
place, we'll keep adding functionality to the runCreditCheck action so we can send a JMS
message with the user's credit data.

We now want to wrap the user's credit information in an object and send it as a JMS
message. Since the rest of our work depends on JMS, let's take a brief tour through JMS
Architecture before we add any more functionality.

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.3. JMS Architecture Overview
We need to understand some of the basics of JMS architecture before using JMS in our
application. Here are the players:

JMS Provider

A messaging system that implements the JMS specification. A JMS Provider, also known
as a JMS Server, routes messages between clients.

Clients

Java applications that send or receive JMS messages. A message sender is called the
Producer, and the recipient is called a Consumer.

Messages

Messages contain data or events exchanged between Producers and Consumers.

Destinations

A Producer sends a message to a JMS Destination (either a Queue or a Topic), and the
Consumer(s) listening on the JMS Destination receives the message.

We now will cover messaging models to show how JMS routes messages between Producers
and Consumers.

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.4. JMS Messaging Models
JMS has two messaging models Point-to-Point (P2P) and Publish-Subscribe (Pub-Sub). P2P is a
traditional one-to-one queueing mechanismalthough multiple Consumers can listen on a queue,
only one Consumer receives a particular message. Producers send messages to a queue, and
the JMS Server delivers each message sequentially to a Consumer listening on the queue.
Figure 7-3 shows the relationships between Point-to-Point Producers and Consumers.

Figure 7-3. JMS Point-to-Point (P2P) Messaging model

Publish-Subscribe is a one-to-many broadcast model, similar to a newsgroup or an RSS
newsfeed. Producers publish messages to a topic, and the JMS Server delivers messages
sequentially to those Consumers subscribed to that topic. Figure 7-4 shows the relationships
between Pub-Sub Producers and Consumers.

7.4.1. Choosing a Messaging Model

Most applications that use the Publish-Subscribe model could use Point-to-Point, and vice
versa. How do you choose a messaging model? We'll give the standard consultant's answer"It
depends." Just like other technologies, your application requirements determine how to use
JMS messaging. According to Richard Monson-Haefel (author of the best-selling O'Reilly EJB
book and co-author of O'Reilly's JMS book), Point-Point JMS messaging is like sending an email
message to a single recipient. Point-to-Point is a way to distribute workload because only one
consumer receives a particular message. Publish-Subscribe JMS messaging is like
sending/broadcasting an email message to a recipient listmany consumers receive the same
message.

Figure 7-4. JMS Publish-Subscribe (Pub-Sub) Messaging model

The JAW Motors application sends a message when a user requests a credit check, and we
want only one consumer to process a particular message just once. So in this chapter, we use
the Point-to-Point model. The biggest difference between P2P and Pub-Sub is that in the
Publish-Subscribe Model, all Consumers that subscribe to a Topic can receive all messages
published to that topic, while with Point-to-Point, only one Consumer on a queue receives a
particular message.

We've covered the basics of JMS architecture and chosen to use a Queue to hold our
message because we selected the Point-to-Point model. Now we need to create a message
(that holds the user's credit information) to send to the Queue.

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.5. Creating a Message
Now we'll wrap the user's credit data in a CreditCheckRequestDTO object so we can send it as a
JMS Message. Example 7-2 shows the code.

Example 7-2. CreditCheckRequestDTO.java

package com.jbossatwork.dto;

import java.io.*;

public class CreditCheckRequestDTO implements Serializable

{

 private String name;

 private String ssn;

 private String email;

 public CreditCheckRequestDTO() { }

 public CreditCheckRequestDTO(String name, String ssn, String email)

 {

 this.name = name;

 this.ssn = ssn;

 this.email = email;

 }

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 public String getSsn()

 {

 return ssn;

 }

 public void setSsn(String ssn)

 {

 this.ssn = ssn;

 }

 public String getEmail()

 {

 return email;

 }

 public void setEmail(String email)

 {

 this.email = email;

 }

}

The CreditCheckRequestDTO is similar to the CarDTO that you saw in previous chaptersit has
setters and getters for each data member. To send an object as a JMS Message, it must obey
the following rules:

 An object must implement java.io.Serializable.

 Each data member must be serializable. By default, String, the Java primitives (int,
float, and so on) and the Java primitive wrappers (Integer, Float, and so on) are all
serializable.

The CreditCheckRequestDTO follows all the rules, so we're done. We've encapsulated the user's
credit information, and now we'll send the CreditCheckRequestDTO as a JMS Message.

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.6. Sending the Message
Example 7-3 shows how to send a JMS Message from the Controller Servlet.

Example 7-3. ControllerServlet.java

public class ControllerServlet extends HttpServlet

{

 ...

 private static final String XA_QUEUE_CONNECTION_FACTORY =

 "java:comp/env/jms/MyXAQueueConnectionFactory";

 private static final String CREDIT_CHECK_QUEUE =

 "java:comp/env/jms/CreditCheckQueue";

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 ...

 else if(RUN_CREDIT_CHECK_ACTION.equals(actionName))

 {

 CreditCheckRequestDTO creditCheckReq = null;

 System.out.println("Credit Check:\nName = [" +

 request.getParameter("name") + "]");

 System.out.println("SSN = [" + request.getParameter("ssn") + "]");

 System.out.println("Email = [" + request.getParameter("email") +

"]");

 creditCheckReq = new CreditCheckRequestDTO(

 request.getParameter("name"),

 request.getParameter("ssn"),

 request.getParameter("email"));

 JmsProducer.sendMessage(creditCheckReq,

XA_QUEUE_CONNECTION_FACTORY,

 CREDIT_CHECK_QUEUE);

 destinationPage = "/index.jsp";

 }

 ...

 }

 ...

}

If you'll recall from the "Running a Credit Check" section, pressing the "Submit Credit Info" from
the "Run Credit Check" form invokes the Controller Servlet's runCreditCheck action. The
Controller Servlet stores the user's credit information in the CreditCheckReqDTO and calls
JmsProducer.sendMessage() to send the credit data as an asynchronous JMS message. After
sending the message, the Controller Servlet returns the user to the main page. The
JmsProducer is a utility class that hides the details of sending a JMS messagethe next few
sections cover the JMS API and the JmsProducer in greater detail.

We've encapsulated the user's credit information in a CreditCheckRequestDTO and shown how
to send it as a JMS Message with the JmsProducer. After quickly reviewing the core JMS API,
we'll see how the JmsProducer sends a JMS Message.

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.7. Core JMS API
The JMS API resides in the javax.jms package. These are the most important classes and
interfaces for our purposes:

Message

Holds business data and routing information. Although you'll find several types of
Messages, most of the time you'll use either a TextMessage (that contains textual data in
its body) or an ObjectMessage (that holds serializable objects in its body).

Destination

Holds messages sent by the Producer to be received by the Consumer(s). A
Destination is either a Queue or a Topic that the JMS Server manages on behalf of its
clients.

Connection

Enables a JMS client to send or receive Messages. Use a Connection to create one or
more Sessions.

ConnectionFactory

A ConnectionFactory is either a QueueConnectionFactory or it is a TopicConnectionFactory
, depending on the messaging model, and it exists to create Connections.

Session

A Session creates Producers, Consumers, and Messages. A Publish-Subscribe application
uses a TopicSession, and a Point-to-Point application uses a QueueSession. Sessions are
single-threaded.

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.8. Sending a JMS Message
Now that we know the basics of JMS, we'll take the following steps to send a message:

 Look up a ConnectionFactory using JNDI.

 Get a Connection from the ConnectionFactory.

 Create a Session associated with the Connection.

 Look up a Destination using JNDI.

 Create a Message Producer tied to the Destination.

 Create a Message.

 Send the Message.

 Tear down the Message Producer, Session, and Connection.

JMS requires a lot of low-level tedious API calls to send a message, so Example 7-4
encapsulates everything into a JmsProducer utility object.

Example 7-4. JmsProducer.java

package com.jbossatwork.util;

import java.io.*;

import javax.jms.*;

/**

 * <code>JmsProducer</code> encapsulates sending a JMS Message.

 *

 */

public class JmsProducer {

 /**

 * Making the default (no arg) constructor private

 * ensures that this class cannnot be instantiated.

 */

 private JmsProducer() { }

 public static void sendMessage(Serializable payload,

 String connectionFactoryJndiName, String destinationJndiName)

 throws JmsProducerException {

 try {

 ConnectionFactory connectionFactory = null;

 Connection connection = null;

 Session session = null;

 Destination destination = null;

 MessageProducer messageProducer = null;

 ObjectMessage message = null;

 connectionFactory = ServiceLocator.getJmsConnectionFactory(

connectionFactoryJndiName);

 connection = connectionFactory.createConnection();

 session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

 destination =

ServiceLocator.getJmsDestination(destinationJndiName);

 messageProducer = session.createProducer(destination);

 message = session.createObjectMessage(payload);

 messageProducer.send(message);

 messageProducer.close();

 session.close();

 connection.close();

 } catch (JMSException je) {

 throw new JmsProducerException(je);

 } catch (ServiceLocatorException sle) {

 throw new JmsProducerException(sle);

 }

 }

}

The JMS ConnectionFactory and Connection are both JNDI-based resources, so we've
encapsulated the JNDI lookups with the ServiceLocatorwe'll show the look-up code in detail in
the "Factoring Out the JNDI Calls" section. The ServiceLocator.getJmsConnectionFactory() call
finds and instantiates the ConnectionFactory to gain access to the JMS provider. The
ConnectionFactory creates a Connection. Use the following parameters in the
Connection.createSession() call to create the Session:

 The first parameter is a boolean that determines whether the Session is transacted.
We've set this value to false because we don't want to manage the transaction
programmatically. As you'll see in the later sections on deployment, we use
Container-Managed Transactions so that JBoss manages the transaction for us.

 The second parameter sets the acknowledgment mode. Using AUTO_ACKNOWLEDGE means
that once the Consumer receives a message, an acknowledgment is sent to the JMS
server automatically. Usually, you should use AUTO_ACKNOWLEDGE and let the container do
all the work for you.

After we've created the Session, the ServiceLocator.getJmsDestination() call finds the
Destination, a proxy to the actual destination (a queue, in this case, because of how it's
deployed) on the JMS server. The Session's createProducer() method creates the
MessageProducer, which sends messages to a destination asynchronously. The call to the
Session's createObjectMessage() method creates an ObjectMessage method that contains the
object passed into the JmsProducer's sendMessage() method. The MessageProducer's send()
method sends the message to the destination, and we wrap up by closing the MessageProducer
, Session, and Connection.

The code above may look a bit strange to readers experienced with previous releases of JMS
(1.0.2 or earlier) and J2EE 1.3. What happened to the QueueConnectionFactory, QueueSender,
QueueSession, QueueConnection, and the Queue? We don't need them anymore. Instead, use the
JMS Unified Client API.

7.8.1. JMS Unified Client API

As of JMS 1.1, the Unified API is now available and works with both the Publish-Subscribe and
Point-to-Point models. The JMS 1.1 specification encourages you to write all your new JMS
code by using the Unified API, since the Queue and Topic-based APIs could become
deprecated in a future version of JMS. However, the model-specific APIs will last for a while
because so much production code uses them. Don't get the wrong ideathe physical JMS
Queues and Topics are not going away. You'll still use them with the Unified API. The Unified
API resembles the Queue and Topic-based APIs because it follows the same calling sequence.
The big difference is that your code doesn't really care if you use Queues or Topics. All you
need to provide are the JNDI names for Queue/Topic Connection Factory and Queue/Topic.

We recommend using the Unified API because it simplifies developmentyou don't need the
Queue or Topic APIs anymore. You'll still send messages to a Queue or Topic (depending on
the JNDI name you use), but this is now just a configuration issue. Your code becomes much
more generic because it no longer uses queue or topic-specific API calls. With the Unified API,
you always access JMS-based resources in the same way, regardless of your JMS messaging
model.

We've wrapped the JMS API calls in the JmsProducer utility to make it easy to send a JMS
message from the Controller Servlet. The JmsProducer used the ServiceLocator utility to find
the ConnectionFactory and the JMS Destination using JNDI. Let's take a closer look at the
ServiceLocator.

7.8.2. Factoring Out the JNDI Calls

We used the ServiceLocator throughout this book to wrap JNDI lookup calls Example 7-5
shows the new JMS-related methods.

Example 7-5. ServiceLocator.java

package com.jbossatwork.util;

...

import javax.jms.ConnectionFactory;

import javax.jms.Destination;

import javax.naming.*;

...

public class ServiceLocator {

 ...

 public static ConnectionFactory getJmsConnectionFactory(

 String jmsConnectionFactoryJndiName) throws ServiceLocatorException {

 ConnectionFactory jmsConnectionFactory = null;

 try {

 Context ctx = new InitialContext();

 jmsConnectionFactory = (ConnectionFactory)

 ctx.lookup(jmsConnectionFactoryJndiName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return jmsConnectionFactory;

 }

 ...

 public static Destination getJmsDestination(String jmsDestinationJndiName)

 throws ServiceLocatorException {

 Destination jmsDestination = null;

 try {

 Context ctx = new InitialContext();

 jmsDestination = (Destination) ctx.lookup(jmsDestinationJndiName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return jmsDestination;

 }

}

The getJmsConnectionFactory() and getJmsDestination() methods, respectively, encapsulate
a JNDI lookup for a JMS ConnectionFactory or JMS Destination. Both methods have the
following steps in common:

 Create the InitialContext to access the JNDI tree.

 Perform a JNDI lookup.

 Cast the object returned from JNDI to the correct JMS object type (ConnectionFactory
or Destination) .

 Throw a ServiceLocatorException that chains a low-level JNDI-related exception and
contains a corresponding error message.

We've written all the code necessary to send a JMS message, and now we need to add JMS
to our deployment. We'll start by adding JMS-based JNDI references to our web deployment
descriptors.

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.9. JMS-Based JNDI References in Web-Based
Deployment Descriptors
In previous chapters, we've used the web.xml file to describe and deploy Servlets and JNDI
resources. Example 7-6 shows the new JMS-based JNDI references in web.xml, so that we can
use the JMS ConnectionFactory and the CreditCheckQueue.

Example 7-6. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

 ...

 <resource-ref >

 <res-ref-name>jms/CreditCheckQueue</res-ref-name>

 <res-type>javax.jms.Queue</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 <resource-ref >

 <res-ref-name>jms/MyXAQueueConnectionFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 ...

</web-app>

<res-ref-name> is the JNDI name for each resourcejava:comp/env/jms/CreditCheckQueue and
java:comp/env/jms/MyXAQueueConnectionFactory. Notice that you don't have to specify
java:comp/env/because it is the assumed prefix. The <res-type> for the CreditCheckQueue is a
JMS Queue, and javax.jms.Queue is its fully qualified class name. The <res-type> for the
Connection Factory is a JMS Queue Connection Factoryjavax.jms.QueueConnectionFactory. We
want JBoss to manage our JMS resources, so you set <res-auth> to Container.

A JNDI resource links into an application only if we ask for it. JBoss binds resources under its
in-JVM context, java:/. The jboss-web.xml file provides a mapping between the J2EE-style
ENC names and the local JBoss-specific JNDI names that JBoss uses to deploy JNDI-based
resources. Example 7-7 shows the JMS-related JNDI references in jboss-web.xml.

Example 7-7. jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN"

"http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

<jboss-web>

 ...

 <resource-ref>

 <res-ref-name>jms/CreditCheckQueue</res-ref-name>

 <jndi-name>queue/CreditCheckQueue</jndi-name>

 </resource-ref>

 <resource-ref>

 <res-ref-name>jms/MyXAQueueConnectionFactory</res-ref-name>

 <jndi-name>java:/JmsXA</jndi-name>

 </resource-ref>

 ...

</jboss-web>

<res-ref-name> is the JNDI name for each resource wherein java:comp/env/ is the assumed
prefix. The textual value of each <res-ref-name> element in jboss-web.xml MUST match the
value of the <res-ref-name> in web.xml. The Queue's <jndi-name> is the local JBoss-specific
JNDI name that JBoss uses to deploy a JMS Queue. You'll usually prefix queue JNDI names with
queue/ and topic JNDI names with topic/. The Queue Connection Factory's <jndi-name> is the
local JBoss-specific JNDI name that JBoss uses to deploy a JMS QueueConnectionFactory, and
the value java:/JmsXA indicates that this QueueConnectionFactory participates in distributed
transactions. Let's take a more detailed look at JMS and its relationship to J2EE transactions.

7.9.1. JMS and Its Relationship to J2EE Transactions

When you use JMS, you can participate in either distributed or local transactions:

Local transaction

A local JMS transaction uses programmatic transaction management and only includes
JMS messages in its transaction context. If any of the message send operations fail,
then the transaction manager rolls back all JMS messages so they're not delivered to
the JMS destination. Other resources (such as JDBC, EJB, and JCA) are not considered
part of the transaction context. In this case, you'll use the JMS Session to manage the
transaction, so you set the transaction flag to true, and then call the Session's
commit() or rollback() method to manage the transaction yourself. You can use a
local transaction from both external and in-container clients. However,
container-managed transactions are one of a J2EE container's core services, and you
normally wouldn't use a local transaction within a J2EE component.

Distributed transaction

A distributed transaction (or two-phase commit) uses the JTA for container-managed
transactions that include JMS and other resources, including JDBC, EJBs, and JCA in its
transaction context. Any failure causes JMS messages and database updates to be
rolled back. The transaction manager commits only if access to all resources was
successful. Set the transaction flag to false, and use a ConnectionFactory that
participates in a distributed transaction. You can use a distributed transaction only
from within a J2EE container. When you get a ConnectionFactory that participates in a
distributed transaction, you're actually getting an XAConnectionFactory that uses the
XA two-phase commit transaction protocol.

7.9.2. Automating JMS-Related JNDI Settings in Web-Based
Deployment Descriptors

As in previous chapters, we don't want to hardcode your deployment descriptors. Since the
JAW Motors application uses JMS from the web tier, we need to add XDoclet tags to the
Controller Servlet so that the Ant build process generates the J2EE standard (web.xml) and
JBoss-specific (jboss-web.xml) web deployment descriptors, as in Example 7-8.

Example 7-8. ControllerServlet.java

/**

 * ...

 *

 * @web.resource-ref

 * name="jms/CreditCheckQueue"

 * type="javax.jms.Queue"

 * auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="jms/CreditCheckQueue"

 * jndi-name="queue/CreditCheckQueue"

 *

 * @web.resource-ref

 * name="jms/MyXAQueueConnectionFactory"

 * type="javax.jms.QueueConnectionFactory"

 * auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="jms/MyXAQueueConnectionFactory"

 * jndi-name="java:/JmsXA"

 *

 */

public class ControllerServlet extends HttpServlet

{

 ...

}

The @web.resource-ref XDoclet tags generate the <resource-ref> elements for the
CreditCheckQueue and MyXAQueueConnectionFactory in web.xml, and the @jboss.resource XDoclet
tags generate the corresponding <resource-ref> elements in jboss-web.xml.

At this point, we've written code to send a JMS message and added JMS-based JNDI
references to your web deployment descriptors. To complete the deployment, we'll deploy our
Queue on JBoss.

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
http://www.processtext.com/abcchm.html

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.10. Deploying JMS Destinations on JBoss
JBoss implements and manages JMS Queues and Topics as JMX MBeans that create the
Destination and register its JNDI name. Here are a few options for creating an MBean for our
Queue:

The JMX console

Go to the JMX Console by visiting the following URLhttp://localhost:8080/jmx-console.
Click on the service=DestinationManager link (under the jboss.mq heading) to see the
JBossMQ DestinationManager MBean page. Look for the createQueue() operation and
enter jms/CreditCheckQueue for the first parameter (the J2EE JNDI name would then be
java:comp/env/jms/CreditCheckQueue), and queue/CreditCheckQueue for the second
parameter (the JBoss-specific JNDI name). Using the JMX console is easy and provides
a dynamic way to specify JMS resources, but your settings will be lost once you shut
down JBoss.

Add an <mbean> element for the queue to
$JBOSS_HOME/server/default/deploy/jms/jbossmq-destinations-service.xml file.

This file is part of the core JBoss deployment and contains JBoss-specific default test
Queues and Topics.

Create your own service descriptor file (post-fixed with -service.xml) that resides in
$JBOSS_HOME/server/default/deploy and add an <mbean> element for the queue.

This is a custom file that you create either by hand or with an automated tool as part
of your build and deployment process.

We created our own service file because we wanted your JMS destination settings to survive
JBoss startup/shutdown, and we didn't want to co-mingle your application-specific JMS
Destinations with JBoss-internal Destinations. Co-mingling destinations is bad because each
time you upgrade to a new version of JBoss, you have to re-add the <mbean> elements to your
service descriptor to make things work again. Example 7-9 shows the
jaw-jms-destinations.xml file that creates an MBean for the CreditCheckQueue.

Example 7-9. jaw-jms-destinations.xml

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <mbean code="org.jboss.mq.server.jmx.Queue"

 name="jboss.mq.destination:service=Queue,name=CreditCheckQueue">

 <depends optional-attribute-name="DestinationManager">

 jboss.mq:service=DestinationManager

 </depends>

 </mbean>

</server>

To deploy our Queue to JBoss, the Ant build script copies the
jaw-jms-destinations-service.xml file from the ch07/src/META-INF directory to the JBoss
deployment directory$JBOSS_HOME/server/default/deploy.

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console
http://www.processtext.com/abcchm.html

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.11. JMS Checklist
Before moving on to Message-Driven Beans, let's recap what we've done so far:

 Upgraded the web site:

o Added a "Run Credit Check" link and form.

o Added a "Run Credit Check" action to the Controller Servlet.

 Added JMS:

o Created a CreditCheckReqDTO object that holds the user's credit information to
send as a JMS message.

o Wrote the JmsProducer utility class to encapsulate sending a JMS message.

o Added JMS-based JNDI reference settings to the Web-based deployment
descriptors (web.xml and jboss-web.xml).

o Automated JMS-based JNDI reference settings with XDoclet.

o Deployed the JMS CreditCheckQueue on JBoss with an MBean.

We developed the code to send a JMS message, and completely deployed your JMS Queue on
JBoss. We now need to add a Message-Driven Bean that consumes and processes the credit
check JMS message.

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.12. Message-Driven Beans (MDBs)
It's taken a while to get here, but we now have the core infrastructure in place to send a JMS
message. To consume JMS messages with an MDB, we'll do the following:

 Write the MDB.

 Deploy the MDB.

 Automate MDB deployment with XDoclet.

A Message-Driven Bean (MDB) is an EJB whose sole purpose is to consume JMS messages.
When a JMS producer sends a message to a JMS destination, the MDB listening on that
destination receives the message and processes it. MDBs are pooled, stateless, and do not
have a Home or Component interface. An MDB implements the JMS MessageListener interface;
its onMessage() method processes the message received from the JMS destination and
implements business logic. Pooling enables concurrent behavior, so several instances of an
MDB would run in parallel if multiple messages are in the queue or topic.

7.12.1. Writing an MDB

In the JAW Motors application, the CreditCheckProcessor MDB:

 Consumes a JMS ObjectMessage that contains a CreditCheckRequestDTO

 Invokes an emulated external credit verification service

Example 7-10 is the code for the MDB.

Example 7-10. CreditCheckProcessorBean.java

package com.jbossatwork.ejb;

import javax.ejb.*;

import javax.jms.*;

import com.jbossatwork.dto.*;

import com.jbossatwork.util.*;

public class CreditCheckProcessorBean implements MessageDrivenBean,

MessageListener

{

 private MessageDrivenContext ctx = null;

 public CreditCheckProcessorBean() { }

 public void setMessageDrivenContext(MessageDrivenContext ctx)

 throws EJBException {

 this.ctx = ctx;

 }

 /**

 * Required creation method for message-driven beans.

 */

 public void ejbCreate() {

 // no specific action required for message-driven beans

 }

 /** Required removal method for message-driven beans. */

 public void ejbRemove() {

 ctx = null;

 }

 /**

 * Implements the business logic for the MDB.

 *

 * @param message The JMS message to be processed.

 */

 public void onMessage(Message message) {

 System.out.println(

 "CreditCheckProcessorBean.onMessage(): Received message.");

 try {

 if (message instanceof ObjectMessage) {

 ObjectMessage objMessage = (ObjectMessage) message;

 Object obj = objMessage.getObject();

 if (obj instanceof CreditCheckRequestDTO) {

 String result = null;

 CreditCheckRequestDTO creditCheckReq =

 (CreditCheckRequestDTO)

obj;

 System.out.println("Credit Check:");

 System.out.println("Name = [" + creditCheckReq.getName()

+

 "]");

 System.out.println("SSN = [" + creditCheckReq.getSsn() +

"]");

 System.out.println("Email = [" + creditCheckReq.getEmail(

) +

 "]");

 System.out.println("Verifying Credit ...");

 result = CreditVerificationService.verifyCredit(

 creditCheckReq);

 System.out.println("Credit Check Result = {" + result +

"]");

 } else {

 System.err.println(

 "Expecting CreditCheckRequestDTO in

Message");

 }

 } else {

 System.err.println("Expecting Object Message");

 }

 } catch (Throwable t) {

 t.printStackTrace();

 }

 }

}

The onMessage() method consumes a JMS message that contains the user's credit
information, but we have to pull the CreditCheckRequestDTO out of the message before using it.
Compare this process to peeling the layers of an onion. We first cast the Message we received
into an ObjectMessage, call its getObject() method to get the Object out, and then cast it
into a CreditCheckRequestDTO. Now that we have the original data entered by the user, we
pass the CreditCheckRequestDTO to our emulated external credit verification service. The
CreditVerificationService.verifyCredit() simulates a long-running process and returns a
String value that tells whether the credit check passed or failed. The code for verifyCredit()
isn't that interesting, so we're not showing it here in the book. If you're dying of curiosity, you
can find the CreditVerificationService class in the JAW Motors application common
sub-project.

You may have noticed that in the onMessage() method we're catching and logging all
exceptions rather than re-throwing them. Exceptions thrown from an MDB have no real calling
code to catch them, so they roll all the way back to the application server. Then, the JMS
provider re-delivers the message to the MDB and the cycle repeats itself. To avoid this
"poison message" problem, your code needs to catch any exceptions so the JMS server
considers the message delivered/consumed and will not attempt to re-deliver the message. In
addition to logging exceptions, you'll probably want to save them in some sort of "dead letter"
queue and send an email or pager message so that system personnel can look into the
problem.

Now that we've written an MDB, let's take a more detailed look at how Message-Driven Beans
relate to J2EE transactions .

7.12.2. MDB Transaction Settings

Like the other EJB types, a Message-Driven Bean has two ways to manage transactions:
Container-Managed Transactions (CMT) and Bean-Managed Transactions (BMT). BMT requires
extra Java coding to handle transaction logic and forces the developer to manage the
transaction and define his own transaction boundaries. In contrast, CMT doesn't require you
to handle transaction logic, pushes transaction settings into deployment descriptors, uses
JBoss transaction services, and manages transaction boundaries on behalf of the developer.
We'll focus on CMT because it is considered a J2EE best practice and allows the container to
do the work.

A transaction attribute tells the container how to handle CMT transactions for an MDB's
onMessage() method. Specify transaction attributes for each Bean in the ejb-jar.xml
deployment descriptor. Here are the possible transaction settings for an MDB:

Required

The onMessage() method always runs within the scope of a transaction. If a
transaction doesn't currently exist, the container starts a new transaction.

NotSupported

The onMessage() method does not run within the scope of a transaction.

A Message-Driven Bean does not run in the transaction context of the client that sent the
JMS message to the queue or topic because an MDB isn't tied to a caller. The JMS message
producer doesn't know if the transaction in the Message-Driven Bean's onMessage() method
committed or rolled back.

There's no need to specify a transaction setting in the CreditCheckProcessor MDB because it
doesn't participate in a transaction. The Bean's onMessage() method only sends an email
message and doesn't do anything transactional (like updating a database).

We've written a Message-Driven Bean and discussed transactions, and now we need to deploy
our MDB.

7.12.3. Deploying an MDB

After developing the code for a Message-Driven Bean (MDB), deploy it by adding information
about the EJB (meta-data) to the J2EE standard (ejb-jar.xml) and JBoss (jboss.xml) EJB
deployment descriptors. The new <message-driven> element describes the MDB by telling the
container:

 That it's a Message-Driven Bean.

 About the bean class.

 That it uses container-managed transactions (CMT).

 That its Acknowledgment mode is Auto-acknowledge.

 That it listens on a non-durable Queue.

Example 7-11 shows the changes to ejb-jar.xml.

Example 7-11. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" version="2.1">

 <enterprise-beans>

 ...

 <message-driven>

 <display-name>CreditCheckProcessorMDB</display-name>

 <ejb-name>CreditCheckProcessor</ejb-name>

 <ejb-class>com.jbossatwork.ejb.CreditCheckProcessorBean</ejb-class>

 <messaging-type>javax.jms.MessageListener</messaging-type>

 <transaction-type>Container</transaction-type>

 <message-destination-type>javax.jms.Queue</message-destination-type>

 <activation-config>

 <activation-config-property>

 <activation-config-property-name>

 destinationType

 </activation-config-property-name>

 <activation-config-property-value>

 javax.jms.Queue

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>

 acknowledgeMode

 </activation-config-property-name>

 <activation-config-property-value>

 Auto-acknowledge

 </activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>

 subscriptionDurability

 </activation-config-property-name>

 <activation-config-property-value>

 NonDurable

 </activation-config-property-value>

 </activation-config-property>

 </activation-config>

 </message-driven>

 ...

 </enterprise-beans>

 ...

</ejb-jar>

In the ejb-jar.xml file you can only indicate that your MDB listens on a Queue, but there are
no elements that associate the CreditCheckProcessor MDB with the CreditCheckQueue. Since
specifying the Queue name isn't part of the EJB specification, we use the jboss.xml descriptor
to associate an MDB with a JMS Destination. The <message-driven> element's
<destination-jndi-name> sub-element tells JBoss that the CreditCheckProcessor MDB listens on
and receives messages from the CreditCheckQueue in Example 7-12.

Example 7-12. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>CreditCheckProcessor</ejb-name>

 <destination-jndi-name>queue/CreditCheckQueue</destination-jndi-name>

 </message-driven>

 ...

 </enterprise-beans>

 ...

</jboss>

7.12.4. Automating MDB Deployment with XDoclet

As in previous chapters, we don't want to hardcode your deployment descriptors. We need to
add XDoclet tags to the CreditCheckProcessor MDB in Example 7-13 so that the Ant build
process adds it to the J2EE standard (ejb-jar.xml) and JBoss-specific (jboss.xml) EJB
deployment descriptors.

Example 7-13. CreditCheckProcessorBean.java

/**

 * @ejb.bean name="CreditCheckProcessor"

 * display-name="CreditCheckProcessorMDB"

 * acknowledge-mode="Auto-acknowledge"

 * destination-type="javax.jms.Queue"

 * subscription-durability="NonDurable"

 * transaction-type="Container"

 *

 * @jboss.destination-jndi-name

 * name="queue/CreditCheckQueue"

 *

 */

public class CreditCheckProcessorBean implements MessageDrivenBean,

MessageListener

{

 ...

}

The @ejb.bean XDoclet tag generates the CreditCheckProcessor MDB's <message-driven>
element and all its subelements in ejb-jar.xml. The @jboss.destination-jndi-name XDoclet tag
generates the corresponding <message-driven> element in jboss.xml that indicates that the
CreditCheckProcessor MDB listens for messages on the CreditCheckQueue.

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
http://www.processtext.com/abcchm.html

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.13. MDB Checklist
We took the following steps to add an MDB to the JAW Motors Application:

 Wrote the CreditCheckProcessor MDB.

 Deployed the CreditCheckProcessor MDB in ejb-jar.xml and jboss.xml.

 Automated deployment of the CreditCheckProcessor MDB with XDoclet.

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.14. Testing the Credit Check
Now that we've deployed the JMS Queue and an MDB to run the credit check, let's test our
application to ensure that everything still works properly. Here are the steps for building and
deploying the application:

 Type ant in the root directory of ch07 to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory. Notice that the Ant build script also
deploys the jaw-jms-destinations.xml JMS Destination service file to JBoss.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

Click on the "Run Credit Check" link on the JAW Motors home page, enter data on the "Run
Credit Check" form, and press the "Submit Credit Info" button. You should be routed back to
the main page and see the following output on your JBoss console:

...

17:05:55,707 INFO [STDOUT] CreditCheckProcessorBean.onMessage(): Received

message.

17:05:55,707 INFO [STDOUT] Credit Check:

17:05:55,707 INFO [STDOUT] Name = [Fred]

17:05:55,707 INFO [STDOUT] SSN = [999999999999999]

17:05:55,707 INFO [STDOUT] Email = [fred@acme.org]

17:05:55,707 INFO [STDOUT] Verifying Credit ...

17:05:59,703 INFO [STDOUT] Credit Check Result = [Fail Credit Check]

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://www.processtext.com/abcchm.html
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

7.15. Looking Ahead ...
This chapter covered JMS and Message-Driven Beans. We upgraded the JAW Motors
application by adding the ability to run a credit check on a customer by using JMS messaging
and an MDB. Along the way, we showed how to deploy these technologies on JBoss.

The JBoss console output proves that the Controller Servlet sent the credit check JMS
message and that the CreditCheckProcessor MDB consumed and processed the message.
However, it isn't completely satisfying because the web site user doesn't know the final result
of the credit verification process. In the next chapter, we'll upgrade the MDB to use the
JavaMail API when sending the user an email notification message.

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 8. JavaMail
In the previous chapter, we upgraded the JAW Motors application by adding the ability to run
a credit check on a customer using JMS messaging and an MDB. We didn't want to make the
user wait a long time for the credit verification to complete, so we deferred this process to
the background. As you'll recall, the CreditCheckProcessor MDB received the credit check
message, invoked a simulated external credit verification service, and printed the result. But
this wasn't completely satisfying because the user on the web site didn't know the final result
of the credit verification process. In this chapter, we'll upgrade the MDB to use the JavaMail
API for sending an email notification message to the user. Along the way we'll show how to
deploy and configure JavaMail on JBoss.

JavaMail 1.2 is a J2EE API that enables Java programs to send and receive email messages.
With JavaMail, you can send text or HTML messages, and you have the option to include
Multipurpose Internet Mail Extensions (MIME) attachments. To keep things simple, we'll send
text messages without attachments.

Let's start by briefly reviewing where we left off in the last chapter.

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.1. Running a Credit Check
If you'll recall, we added a "Run Credit Check" link to the JAW Motors homepage as shown in
Figure 8-1.

Figure 8-1. JAW Motors homepage

When the user clicks on the "Run Credit Check" link, the Controller routes them to the Run
Credit Check page as depicted in Figure 8-2.

Figure 8-2. JAW Motors Run Credit Check page

The user enters his name, Social Security Number (SSN), and email address in the form, and
presses the "Submit Credit Info" button. When a customer requests a credit check, he won't
have to wait while for the external credit verification process to complete. The Controller
Servlet sends a JMS message asynchronously to back end components that process business
logic for the request. The customer gets routed back to the JAW Motors home page and then
is free to continue using the JAW Motors web site while the credit check completes in the
background.

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.2. Sending Email Messages with JavaMail
To upgrade the JAW Motors application to send email messages using JavaMail, we need to do
the following:

 Add Java Code:

o Call the JavaMail utility class from the MDB .

o Write a utility class to encapsulate sending an email message with JavaMail.

o Factor out JNDI calls into the ServiceLocator.

 Upgrade deployment:

o Add JavaMail-based JNDI reference settings to the EJB-based deployment
descriptors (ejb-jar.xml and jboss.xml).

o Automate JavaMail-based JNDI reference settings with XDoclet.

o Configure JavaMail on JBoss with an MBean.

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.3. Upgrading the MDB to Send an Email Message
If you'll recall from the JMS and MDB chapter, the CreditCheckProcessor MDB's onMessage()
method consumes the message and invokes a simulated external credit verification service.
Example 8-1 shows the changes necessary to send an email message with JavaMail.

Example 8-1. CreditCheckProcessorBean.java

public class CreditCheckProcessorBean implements MessageDrivenBean,

MessageListener

{

 private static final String JAVAMAIL_SESSION =

 "

java:comp/env/mail/JawJavaMailSession";

 private static final String JAW_MOTORS_EMAIL_ADDRESS =

 "credit.check@jbossatwork.com";

 private static final String CREDIT_VERIFICATION_RESULT = "Credit Check

Result";

 ...

 public void onMessage(Message message) {

 System.out.println(

 "CreditCheckProcessorBean.onMessage(): Received message.");

 try {

 if (message instanceof ObjectMessage) {

 ObjectMessage objMessage = (ObjectMessage) message;

 Object obj = objMessage.getObject();

 if (obj instanceof CreditCheckRequestDTO) {

 String result = null;

 CreditCheckRequestDTO creditCheckReq =

 (CreditCheckRequestDTO)

obj;

 System.out.println("Verifying Credit ...");

 result = CreditVerificationService.verifyCredit(

 creditCheckReq);

 System.out.println("Credit Check Result = [" + result +

"]");

 sendNotificationEmail(creditCheckReq, result);

 } else {

 System.err.println(

 "Expecting CreditCheckRequestDTO in

Message");

 }

 } else {

 System.err.println("Expecting Object Message");

 }

 } catch (Throwable t) {

 t.printStackTrace();

 }

 }

 private void sendNotificationEmail(CreditCheckRequestDTO creditCheckReq,

 String result) {

 javax.mail.Session javaMailSession = null;

 try {

 javaMailSession =

 ServiceLocator.getJavaMailSession(JAVAMAIL_SESSION);

 TextEmail email = new TextEmail(javaMailSession);

 email.setBody(result);

 email.setSender(JAW_MOTORS_EMAIL_ADDRESS);

 email.setSubject(CREDIT_VERIFICATION_RESULT);

 email.addRecipient(creditCheckReq.getEmail());

 System.out.println("Sending Email to [" + creditCheckReq.getEmail(

) +

 "] ...");

 email.send();

 } catch (ServiceLocatorException sle) {

 System.err.println("Error Looking up JavaMail Session: " + sle);

 sle.printStackTrace();

 }

 }

}

The onMessage() method consumes a JMS message that contains the user's credit
information. After pulling the CreditCheckRequestDTO out of the JMS message, we pass it to our
emulated external credit verification service. The CreditVerificationService.verifyCredit()
method simulates a long-running process and returns a String result value that indicates
whether the credit check passed or failed. The sendNotificationEmail() method takes the
CreditCheckRequestDTO and credit check result as parameters and sends a notification email to
the customer. The sendNotificationEmail() method uses the ServiceLocator to look up a
JavaMail Session by using JNDI, and then invokes the TextEmail utility class to send the email
message. Some readers may not be familiar with using JNDI to look up a JavaMail Sessionwe'll
cover this in the "JavaMail Sessions" section. The "Factoring out JNDI Calls" section shows the
new ServiceLocator method used to find the JavaMail Session.

Let's take a closer look at the TextEmail utility to see how it uses the JavaMail API calls to
send an email message.

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.4. Sending an Email Message
Creating and sending an email message with JavaMail requires the following steps:

 Get a JavaMail Session (which we did in the MDB's sendEmailNotification() method).

 Create the message.

 Set the "From" email address.

 Set the recipients' email addresses.

 Set the subject.

 Create the body and add it to the message.

 Send the message.

JavaMail requires a lot of low-level tedious API calls to send an email message, so we've
encapsulated everything into the TextEmail utility object in Example 8-2.

Example 8-2. TextEmail.java

package com.jbossatwork.util;

import javax.mail.*;

import javax.mail.internet.*;

import java.util.*;

/**

 * TextEmail defines utility methods for the JavaMail API, which provides

 * a platform independent and protocol independent framework to build Java

 * technology-based mail and messaging applications.

 *

 */

public class TextEmail {

 ...

 private Session session;

 private InternetAddress sender = new InternetAddress();

 private String subject = new String();

 private StringBuffer body = new StringBuffer();

 private List recipients = new ArrayList();

 ...

 public TextEmail(Session session) throws EmailException {

 setSession(session);

 }

 ...

 public void setSession(Session session) {

 this.session = session;

 }

 ...

 public void send() throws EmailException {

 try {

 ...

 InternetAddress[] recipientsArr = (InternetAddress[])

 recipients.toArray(new InternetAddress[0]);

 // Create a New message.

 MimeMessage msg = new MimeMessage(session);

 // Set the "From" address.

 msg.setFrom(sender);

 // Set the "To recipients" addresses.

 msg.setRecipients(Message.RecipientType.TO, recipientsArr);

 ...

 // Set the Subject.

 msg.setSubject(subject);

 // Set the Text.

 msg.setText(body.toString());

 // Set the sent date.

 msg.setSentDate(getSentDate());

 // Send the message.

 Transport.send(msg);

 } catch (MessagingException me) {

 throw new EmailException(me);

 }

 }

}

We left out the getter and setter methods for the sender, subject, body, and recipients data
members to shorten the code example above, but you can look at the full TextEmail class in
the book's code distribution.

The send() method first converts the list of recipients from Strings to InternetAddresses that
represent email addresses in the standard RFC822 formatsomething like name@host.domain is
a common syntax. The MimeMessage constructor takes a JavaMail Session and instantiates the
JavaMail message. We'll talk more about JavaMail Sessions in the next section. The message's
setFrom() method sets the sender's email address, and the message's setRecipients() call
sets the required recipients list. The message's setSubject() method sets the email
message's subject line and the MimeMessage's setText() method sets the email message's
body text. The message's setSentDate() method sets the email message's sent date, and
the transport.send() call sends the message.

8.4.1. JavaMail Sessions

A JavaMail Session represents a connection to a JavaMail provider that enables an application
to send or receive email messages. After looking at the TextEmail code above, you may be
thinking, "I already know JavaMail, so how is this different from what I've done before?" You
may be familiar with setting JavaMail properties and using the Session.getDefaultInstance()
method to get a JavaMail Session. You've probably written code that looks like Example 8-3.

Example 8-3. TextEmail.java

 private Session getDefaultSession() {

 Properties props = new Properties();

 props.setProperty("mail.store.protocol", "pop3");

 props.setProperty("mail.pop3.host", "mail.isp.host.name");

 props.setProperty("mail.transport.protocol", "smtp");

 props.setProperty("mail.smtp.host", "smtp.isp.host.name");

 props.setProperty("mail.smtp.port", "25");

 // Get the default Session using Properties.

 Session session = Session.getDefaultInstance(props);

 return session;

 }

In the example above, we use Sun's default JavaMail provider and supply an email server's
Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP) properties to get a
JavaMail Session. Your email service provider also may require a user ID and password.

When creating a JavaMail Session, you can use either Sun's default JavaMail provider (as
shown in the above getdefaultSession() method) or the JavaMail provider that comes with
JBoss (using JNDI, as shown in the CreditCheckProcessorBean's sendNotificationEmail()
method). If your code runs inside the JBoss application server, we recommend using the JBoss
JavaMail provider because:

 Using the container's JavaMail provider is a standard practice, and all J2EE application
servers must implement a JavaMail provider. In other words, if you're already working
with JBoss, then use its services.

 You can use the container's JavaMail provider without adding application-specific setup
information to your code. Your code thus remains portable across J2EE application
servers. Each server defines JavaMail setup in its own way, but they usually have an
external XML-based descriptor that configures a JavaMail Session.

The JAW Motors application uses JBoss' JavaMail provider by using a JNDI lookup to find the
JavaMail Session associated with the JBoss server instance. We've wrapped the JavaMail API
calls in the TextEmail utility to make it easy to send an email message with the JavaMail API.
The CreditCheckProcessorBean used the ServiceLocator utility to find the JavaMail Session that
uses JNDI. Let's take a closer look at the ServiceLocator.

8.4.2. Factoring out the JNDI Calls

We've used the ServiceLocator throughout this book to wrap JNDI lookup calls Example 8-4
shows the new JavaMail-related method.

Example 8-4. ServiceLocator.java

package com.jbossatwork.util;

...

import javax.naming.*;

...

public class ServiceLocator {

 ...

 public static javax.mail.Session getJavaMailSession(

 String javaMailSessionJndiName) throws

ServiceLocatorException {

 javax.mail.Session javaMailSession = null;

 try {

 Context ctx = new InitialContext();

 javaMailSession = (javax.mail.Session)

 ctx.lookup(javaMailSessionJndiName);

 } catch (ClassCastException cce) {

 throw new ServiceLocatorException(cce);

 } catch (NamingException ne) {

 throw new ServiceLocatorException(ne);

 }

 return javaMailSession;

 }

 ...

}

The getJavaMailSession() method encapsulates a JNDI lookup for JavaMail Session by taking
the following steps:

 Create the InitialContext to access the JNDI tree.

 Perform a JNDI lookup.

 Cast the object returned from JNDI to the correct typejavax.mail.Session

 Throw a ServiceLocatorException that chains a low-level JNDI-related exception and
contains a corresponding error message.

We've written all the necessary code to send an email message with the JavaMail API, and
now we need to add JavaMail to our deployment. We'll start by adding JavaMail-based JNDI
references to our EJB deployment descriptors.

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:name@host.domain
http://www.processtext.com/abcchm.html

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.5. JavaMail-Based JNDI References in EJB
Deployment Descriptors
In previous chapters we've used the ejb-jar.xml and jboss.xml file to describe and deploy
EJBs and JNDI resources. Here are the new JavaMail -based JNDI references in ejb-jar.xml
that enable the CreditCheckProcessor MDB to use a JavaMail Session, as in Example 8-5.

Example 8-5. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns=http://java.sun.com/xml/ns/j2ee

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" version="2.1">

 <enterprise-beans>

 ...

 <message-driven>

 <display-name>CreditCheckProcessorMDB</display-name>

 <ejb-name>CreditCheckProcessor</ejb-name>

 ...

 <resource-ref>

 <res-ref-name>mail/JawJavaMailSession</res-ref-name>

 <res-type>javax.mail.Session</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

 ...

 </message-driven>

 ...

</ejb-jar>

The <resource-ref> elements specify the JNDI resources available to the
CreditCheckProcessorMDB (or any POJO that it calls). <res-ref-name> is the JNDI name for the
resourcejava:comp/env/mail/JawJavaMailSession. Notice that you don't have to specify
java:comp/env/because it is the assumed prefix. The <res-type> for the
mail/JawJavaMailSession is a JavaMail Session, and javax.jms.Session is its fully qualified class
name. We want JBoss to manage our JavaMail resources, so we set <res-auth> to Container.

A JNDI resource is linked into an application only if we ask for it. JBoss binds resources under
its in-JVM context, java:/. The jboss.xml file provides a mapping from the J2EE-style ENC
names and the local JBoss-specific JNDI names that JBoss uses to deploy a JavaMail Session.
Example 8-6 shows the JavaMail-related JNDI references for the CreditCheckProcessor MDB in
jboss.xml.

Example 8-6. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

 <enterprise-beans>

 ...

 <message-driven>

 <ejb-name>CreditCheckProcessor</ejb-name>

 <destination-jndi-name>queue/CreditCheckQueue</destination-jndi-name>

 <resource-ref>

 <res-ref-name>mail/JawJavaMailSession</res-ref-name>

 <jndi-name>java:/Mail</jndi-name>

 </resource-ref>

 </message-driven>

 ...

 </enterprise-beans>

 ...

</jboss>

As you'll see in the "Deploying JavaMail on JBoss" section, the java:/Mail name is the local JNDI
name that JBoss uses to deploy its JavaMail Session.

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
http://www.processtext.com/abcchm.html

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.6. Automating JavaMail-Based JNDI References with
XDoclet
As in previous chapters, we don't want to hardcode our deployment descriptors. We need to
add XDoclet tags to the CreditCheckProcessor MDB so the Ant build process can add the
JavaMail JNDI settings to the J2EE standard (ejb-jar.xml) and JBoss-specific (jboss.xml) EJB
deployment descriptors in Example 8-7.

Example 8-7. CreditCheckProcessorBean.java

/**

 * ...

 *

 * @ejb.resource-ref

 * res-ref-name="mail/JawJavaMailSession"

 * res-type="javax.mail.Session"

 * res-auth="Container"

 *

 * @jboss.resource-ref

 * res-ref-name="mail/JawJavaMailSession"

 * jndi-name="java:/Mail"

 *

 */

public class CreditCheckProcessorBean implements MessageDrivenBean,

MessageListener

{

 ...

}

The @ejb.resource-ref XDoclet tag generates the <resource-ref> element for the
JawJavaMailSession in ejb-jar.xml, and the @jboss.resource XDoclet tag generates the
corresponding <resource-ref> element in jboss.xml.

At this point, we've written code to send an email message with JavaMail and added
JavaMail-based JNDI references to our EJB deployment descriptors. To complete the
deployment, we'll deploy JavaMail on JBoss.

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.7. Deploying JavaMail on JBoss
We now need to configure JBoss so we can use it as a JavaMail provider. JBoss manages a
JavaMail Session as a JMX MBean that creates the Session and registers its JNDI name. The
JBoss JavaMail XML descriptor, $JBOSS_HOME/server/jbossatwork/deploy/mail-service.xml, sets
up a JMX MBean that configures a JNDI-based JavaMail Session in Example 8-8.

Example 8-8. mail-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE server>

<server>

 <mbean code="org.jboss.mail.MailService"

 name="jboss:service=Mail">

 <attribute name="JNDIName">java:/Mail</attribute>

 <attribute name="User">yourUserId</attribute>

 <attribute name="Password">yourPassword</attribute>

 <attribute name="Configuration">

 <configuration>

 <!-- Set the protocol for your mail server -->

 <property name="mail.store.protocol" value="pop3"/>

 <property name="mail.transport.protocol" value="smtp"/>

 <!-- Configure the POP3 Server -->

 <property name="mail.pop3.host" value="yourIsp.pop3.host"/>

 <!-- Configure the SMTP gateway server -->

 <property name="mail.smtp.host" value="yourIsp.smtp.host "/>

 <property name="mail.smtp.port" value="25"/>

 <property name="mail.debug" value="true"/>

 </configuration>

 </attribute>

 </mbean>

</server>

The mail-service.xml file configures a JavaMail Session with the email account properties that
you use to connect with your email service provider:

 Mail Store Protocol

 Mail Transport Protocol

 SMTP server name

 POP server name

 An email account user ID

 An email account password

These are standard JavaMail properties, and you can find a complete listing of them in
Appendix A of the JavaMail Design Specification at:
http://java.sun.com/products/javamail/JavaMail-1.2.pdf.

The example above uses bogus values for its ISP settings, so you'll need to edit the
$JBOSS_HOME/server/jbossatwork/deploy/mail-service.xml file and fill in the protocol and
account settings you use to access your ISP's mail server. You could change the JNDI name
to something other than java:/Mail, but every JBoss installation we've seen uses this value to
deploy its JavaMail Session. Therefore we recommend sticking with the default value to be
consistent with the way most people use JBoss.

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/products/javamail/JavaMail-1.2.pdf
http://java.sun.com/products/javamail/JavaMail-1.2.pdf
http://www.processtext.com/abcchm.html

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.8. JavaMail Checklist
Before we move on to test the JAW Motors application's new email functionality, let's recap
what we've done to implement JavaMail:

 Added Java Code:

o Called the TextEmail JavaMail utility class from the CreditCheckProcessor MDB

o Wrote a TextEmail utility class to encapsulate sending an email message with
JavaMail

o Factored out JNDI calls into the ServiceLocator

 Upgraded deployment:

o Added JavaMail-based JNDI reference settings to the EJB-based deployment
descriptors (ejb-jar.xml and jboss.xml)

o Automated JavaMail-based JNDI reference settings in the CreditCheckProcessor
MDB with XDoclet

o Configured JavaMail on JBoss with an MBean

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.9. Testing the Credit Check Notification Email
Now that we've developed and deployed JavaMail code to send an email notification message
to the user, let's test our application to ensure that everything still works properly. Here are
the steps to build and deploy the application:

 Type ant in the root directory of ch08 to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

Click on the "Run Credit Check" link on the JAW Motors home page, enter data on the "Run
Credit Check" form, and press the "Submit Credit Info" button. You should be routed back to
the main page, and in a minute or two you should see a message that looks like this in your
email client's Inbox:

From: credit.check@jbossatwork.com

To: yourName@host.domain

Subject: Credit Check Result

Pass Credit Check

The credit check randomly passes or fails, so you could also see "Fail Credit Check" in the
email message body.

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://www.processtext.com/abcchm.html
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

8.10. Looking Ahead ...
This chapter covered JavaMail. We upgraded the JAW Motors application by using JavaMail to
send an email notification to the customer after running a credit check. Along the way, we
showed how to deploy and configure JavaMail on JBoss.

For our purposes, we're now finished with core functionality for the JAW Motors application. In
the next chapter, we'll show how to secure the application.

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 9. Security
If you've worked through all the previous chapters, you have a fully functional vertical slice of
the JAW Motors application that allows you to run a credit check and view, add, edit
(update), delete, and buy cars. Although this works, there's a gaping holeanyone with a
browser who knows the application's URL can modify JAW Motors' inventory. So we need to
add security to the application. In this chapter, we'll secure the "Car Inventory" and "Add/Edit
Car" pages so that only authorized users can modify cars in the inventory. We won't secure
the "Buy Car" or "Run Credit Check" pages (and their underlying functionality) because we still
want all users to be able to buy a car or run a credit check without having to log in. We'll
discuss J2EE web-based security, Java Authentication & Authorization Service (JAAS), and
EJB security. Along the way we'll show how to deploy these security mechanisms on JBoss.

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.1. J2EE Security
Security is an important part of J2EE application architecture because the J2EE components
and tiers used in a system's architecture determine the choice of security technologies. If an
application uses only web-based technologies, then it only needs to restrict access to JSPs,
Servlets, and so on. But EJBs are now part of the JAW Motors architecture, so they must be
protected as well. The system must create a security context that encompasses the entire
J2EE stack from frontend web pages to backend business logic and data. We need a unified
security mechanism that propagates the user's credentials to all components in the
application.

The two fundamental concepts in J2EE security are:

Authentication

Answers the following questions:

 Who is attempting to access the system?

 Is this person allowed to access the system?

Authorization

Determines what an authenticated user can access in an application.

Authentication is an important aspect of a J2EE application's architecture and security
strategy, and ensures that only valid users or entities can use the system's resources.
Authentication is the front line of defense in protecting sensitive business logic and data from
users. Authentication identifies a user in the system, and requires the user to log on just as
they would log on to an operating system or database. Users identify themselves to the
system by supplying credentials, which could be in the form of passwords, certificates, or
keys. If the user enters a valid username and password, the user can access sensitive
portions of the web site; otherwise, access is denied.

Although restricting access on internal business functions and web pages to known users of
the JAW Motors is a good first step in securing the system, it still isn't enough. We know who
the user is, but what can they do in the system? What are they not allowed to do? How can
we ensure that users see only what they're allowed to access? Authorization answers these
questions and strengthens security by adding the concept of roles to our security realm. Each
role represents different types of users, and the JAW Motors application has the following
roles:

Manager

A manager is an administrative user who can modify the JAW Motors inventory.

Guest

A guest is a user who can only view the JAW Motors inventory.

Although there is no need to protect public pages and their underlying business logic, we must
prevent unauthenticated/unauthorized users from accessing protected web pages and
business functions.

Let's start by securing the web tier and working our way down through the architecture.

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.2. Web-Based Security
To secure the web site, we need to do the following:

 Protect the administrative pages:

o Restrict access based on the URL pattern.

o Associate security roles with the URL.

o Create security roles for the JAW Motors application.

 Choose an Authentication mechanism and implement it.

 Automate extra web.xml settings with XDoclet.

 Create a security realm that associates a user with the roles he plays in the system.

 Configure a JAAS LoginModule that's tied to the security realm.

 Deploy the JAAS-based security realm with the JBoss container.

 Protect MVC administrative actions:

 Restrict access based on the URL pattern.

 Propagate the correct user credentials from the web tier:

o Establish a default user identity for non-secure web access.

o Use the right user identity for secure web access.

9.2.1. Protecting the Administrative Pages

J2EE provides Declarative Security, so rather than writing code to protect our resources, we
can accomplish this through URL patterns and deployment descriptors. If you'll recall, the Car
Inventory page (carList.jsp), as shown in Figure 9-1, enables you to view and modify the
JAW Motors inventory.

Figure 9-1. JAW Motors Car Inventory page

We also must protect the Add/Edit Car page (carForm.jspyou see this page when you press
the "Add Car" or "Edit" link on the Car Inventory page) (Figure 9-2).

Figure 9-2. JAW Motors Add/Edit Car page

We first move carList.jsp and carForm.jsp to a sub-directory under WEB-INF (in the WAR file)
called admin to differentiate these protected pages from the public pages. Now our pages in
the WAR file look like this:

WEB-INF/

All public non-protected pages, including index.jsp, go here.

WEB-INF/admin/

All administrative protected pages, including carList.jsp and carForm.jsp, go here.

To access these pages, you would now use this URL as a prefix:
http://localhost:8080/ch09/admin/

But we still need to restrict access to the administrative pages by creating security roles and
associating them with these URL patterns in web.xml.

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/ch09/admin/
http://localhost:8080/ch09/admin/
http://www.processtext.com/abcchm.html

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.3. Restricting Access with web.xml
We restrict access to the administrative page URLs in web.xml as in Example 9-1.

Example 9-1. web.xml

 ...

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 JAW Application protected Admin pages.

 </web-resource-name>

 <description>Require users to authenticate.</description>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <description>

 Allow Manager role to access Admin pages.

 </description>

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <description>JAW Managers</description>

 <role-name>Manager</role-name>

 </security-role>

 ...

The <security-constraint> element protects the administrative pages by specifying:

 A protected URL pattern for the admin pages, /admin/* the protected JSPs reside in
the web application's /admin directory.

 That only users who are in the Manager role can access the administrative page. This
role must be specified in a separate <security-role> element.

To be complete, we've also modified the Controller Servlet in Example 9-2 to prefix all
administrative pages with the admin/ URL.

Example 9-2. ControllerServlet.java

public class ControllerServlet extends HttpServlet

{

 ...

 protected void processRequest(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException {

 ...

 // perform action

 ...

 else if(MODIFY_CAR_LIST_ACTION.equals(actionName))

 {

 ...

 destinationPage = "/admin/carList.jsp";

 }

 ...

 }

}

What About Web-Based Programmatic Security?

The Servlet API enables you to go farther with security and add more fine-grained
control to resources by using the following methods on HttpServletRequest:

 geTRemoteUser()

 isUserInRole()

 getUserPrincipal()

These methods determine the user's identity, or whether they play a particular role
in the system. You also could write Servlet Filters that protect access to
resources and determine if a user has logged in. Many developers write a
LoginAction that checks the user's ID and password from a custom form.

Programmatic security is declining in popularity because it clutters your application
with security-related calls. Declarative security handles the above scenarios on
your behalf so you don't have to write so much code. Before using these API calls,
see if J2EE Declarative Security can meet all or most of your needs.

But declarative security isn't a silver bullet that solves all your problems. What if
you have a loan application in which loan officer X can approve loans up to only a
certain amount? In this case, you'll have to add some code to enforce this
business policy. Even if you really do need to use some form of programmatic
security, starting with declarative security will reduce the complexity and the
amount of code you write. But in practice, we've seen that declarative security
usually satisfies our security needs.

We've protected the administrative pages' URLs so that only authenticated users can access
these pages. We now have to choose an authentication method.

9.3.1. Web-Based Authentication

Authentication establishes the user's identity in the system. There are four methods of
authentication:

HTTP Basic Authentication

With HTTP Basic Authentication, the container asks for the user's name and password
from a pop-up dialog box. The user information sent back to the server is not
encrypted.

HTTP Digest Authentication

HTTP Digest Authentication also uses a pop-up dialog, but the username and password
are encrypted when sent to the HTTP server. Digest Authentication isn't widely used,
and the Servlet 2.4 Specification doesn't require Servlet containers to implement it.

HTTPS Client (or Client-Cert) Authentication

Client-Cert Authentication uses Secure Sockets Layer (SSL) Certificates, and the
server determines whether the certificate from the client is valid.

Form-based Authentication

When the user clicks on a protected page, she is redirected to an application-specific
login page. If the user enters a valid user ID and password, she's allowed to access
the protected resource(s). Otherwise, the user is redirected to a custom login error
page.

What About Configuring SSL on JBoss?

Since JBoss uses Tomcat as its Servlet container, you are going to do the same
type of setup that you have always done before. Go into the Tomcat SAR
subdirectory of your server configuration's deployment directory
$JBOSS_HOME/server/default/deploy/jbossweb-tomcat55.sar. Edit the server.xml
file and uncomment the <Connector> element for SSL that listens on port 8443.
Then, use the Java keytool program to generate a certificate and copy it to your
server configuration's conf directory$JBOSS_HOME/server/default/conf.

9.3.2. Form-Based Authentication

We're using Form-based authentication because it is the most commonly used authentication
technique and we want to use our own login page. Example 9-3 shows how we configure
Form-based authentication in web.xml.

Example 9-3. web.xml

 ...

 <login-config>

 <auth-method>FORM</auth-method>

 <realm-name>JawJaasDbRealm</realm-name>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/loginError.jsp</form-error-page>

 </form-login-config>

 </login-config>

 ...

The <realm-name> element specifies the name of our security realm, and its textual value,
JawJaasDbRealm, must match the name of the security realm specified in the JBoss JAAS login
configuration file. We'll see the login.jsp and loginerror.jsp pages in action in the "Testing
Secure JSPs" section. For now, let's take a closer look at the login page.

9.3.3. The Login Form

Example 9-4 is an excerpt from the form in the login.jsp page.

Example 9-4. login.jsp

<form method="POST" action="j_security_check">

 <input type="text" name="j_username">

 <input type="password" name="j_password">

</form>

Form-based Authentication requires the following naming conventions on the login form :

 The user ID and password fields must be named j_username and j_password,
respectively.

 The form must post the user login information to j_security_check.

 Everything else (the appearance and location of the login and error page) is under our
control.

9.3.4. Automating Declarative Authentication and Authorization in
web.xml

In web.xml, we had to add the <security-constraint>, <security-role>, and <login-config>
elements to set up Form-based authentication, but XDoclet doesn't provide a way to generate
these elements. We could've hardcoded these elements, but this wouldn't fit with our
Ant-based build process. So we created an XDoclet merge file called web-security.xml that
XDoclet merged in as it generated web.xml. You can find web-security.xml in the xdoclet/merge
directory in the ch09-a project's webapp sub-project that comes with the JAW Motors code
distribution.

9.3.5. Creating a Security Realm

We're now going to create a security realm using database tables that associates a user with
the roles he plays in the system. Table 9-1 shows the Users from the USER table.

Table 9-1. JAW Motors USER table

USER_ID USER_NAME PASSWORD

1 Fsmith fred

2 Jjones john

Table 9-2 shows the JAW Motors application's Roles in the ROLE table.

Table 9-2. JAW Motors ROLE table

ROLE_ID ROLE_NAME

1 Manager

Now we need to specify the roles for each user in the system. Table 9-3 shows the USER_ROLE
table that shows which roles a user has by joining the USER and ROLE tables.

Table 9-3. JAW Motors USER_ROLE table

USER_ID ROLE_ID

1 1

2 1

When joined with the USER and ROLE tables, the data in the USER_ROLE table indicates that both
users have the Manager role. You can find these new security-related tables in the ch09-a
project's sql/build.xml file.

Now that we've set up declarative security and created a security realm, we need to deploy
the security realm on JBoss. Before we can discuss web-based security any further, we need
to cover core JAAS concepts because the JBoss security manager, JBoss Security Extension
(JBossSX), is based on JAAS. After discussing the core JAAS API, we'll then get to the heart
of JAAS-based securitythe LoginModule.

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.4. JAAS
The Java Authentication & Authorization Service (JAAS) enables an application to protect its
resources by restricting access to only those users with proper credentials and permissions.
JAAS provides a layer of abstraction between an application and its underlying security
mechanisms, making it easier to change security technologies and realms without impacting
the rest of the system. JAAS is a standard Java extension in J2SE 1.4, and provides pluggable
authentication to give application designers a wide choice of security realms:

 DBMS

 Application Server

 LDAP

 Operating System (UNIX or Windows NT/2000)

 File System

 JNDI

 Biometrics

JAAS supports single sign-on for an application. Rather than forcing the user to log in to a
web site, and then log in again to a forum or a backend legacy system used by the
application, JAAS wraps all of this in one central login event to make it easier to coordinate
access to all systems that the user needs. We chose JAAS as the basis for our security
strategy because:

 It provides a security context that covers the entire J2EE architecture from the web
tier to the EJB tier.

 It is application server neutral.

 It integrates with the Java 2 security model.

 It is part of the J2SE 1.4 extension API.

 It is more sophisticated than the other authentication mechanisms and provides more
functionality.

 It supports single sign-on by coordinating multiple security realms.

 It addresses authorization in addition to authentication.

 It provides good encapsulation for authentication and authorization, enabling an
application to be independent of the underlying security mechanisms used.

 JBoss bases its security mechanism on JAAS.

Although this isn't a JAAS book, we've added more detailed information on JAAS in Appendix C
JAAS Tutorial.

9.4.1. LoginModule

The LoginModule logs a user/Subject into a security realm based on their username and
password. A LoginModule could interact with an operating system, a database, JNDI, LDAP, or
a biometric device like a retinal scanner or touch pad. Application developers normally don't
need to know very much about LoginModules because the LoginContext invokes them on behalf
of an application. So your code never interacts with LoginModules. To add or remove a
LoginModule used by your application, you need to modify only the LoginModule Configuration
fileyour code remains unchanged. This indirection enables an application to be independent of
the underlying security mechanisms used

Although you could write your own LoginModule, it is usually unnecessary because of the
abundance of quality third-party Open Source implementations available. You only need to
know how to configure (in the LoginModule Configuration file) and deploy them for your
particular runtime environment. If the Open Source LoginModule implementations don't provide
all the functionality you need, you can either modify the code from that library or write your
own LoginModule. Since this topic is outside the scope of this book, please see the JAAS
LoginModule Developers' Guid e (
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html) for further
details. Here are some freely available LoginModules:

Tagish

Tagish has a set of Open Source JAAS LoginModules released under the GNU LGPL
(Lesser GNU Public License) that can be found at http://free.tagish.net/jaas. The
Tagish collection has the following LoginModules:

 DBMS

 File System

 Windows NT/2000 domain

Sun Microsystems

Sun bundles several LoginModules with J2SE 1.4. However, they are in the
com.sun.security.auth.module package and not officially part of J2SE 1.4 because
they're Sun's implementation of the JAAS interfaces. Sun provides the following
LoginModules:

 Kerberos

 Key Store

 JNDI

 Windows NT

 UNIX

JBoss

JBoss provides several LoginModules with its distribution, including:

 DBMS

 File-based

 Key Store

 LDAP

 External Client

We could easily configure the Tagish, Sun, or JBoss LoginModules and use them with the JAW
Motors application. We chose the JBoss LoginModules because they're already bundled with
JBoss and we don't need to configure any third party JARs. Even though we're using
LoginModule s provided by JBoss, the application code remains vendor-neutral because:

 The LoginModules are configured in an external configuration file.

 The application code doesn't change if you use different LoginModules.

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://free.tagish.net/jaas
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://free.tagish.net/jaas
http://www.processtext.com/abcchm.html

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.5. Deploying a JAAS-Based Security Realm on JBoss
There is no standard for integrating JAAS deployment with a J2EE application server, so each
server has its own way to set up LoginModule configuration and domain names. So, we need
to:

 Configure the LoginModule.

 Add the LoginModule's security domain name to jboss-web.xml.

9.5.1. JBoss LoginModule Configuration

To Configure a LoginModule in JBoss, you have a couple of options.

 Add the LoginModule configuration data to the JBoss default
$JBOSS_DIST/server/default/conf/login-config.xml.

 Create your own custom LoginModule configuration file in
$JBOSS_DIST/server/default/conf that has the same structure as login-config.xml and
conforms to the security_config.dtd.

9.5.2. Custom LoginModule Configuration

We chose to create our own separate LoginModule Configuration file, jaw-login-config.xml,
because we didn't want to co-mingle our application-specific JAAS LoginModule configuration
with JBoss-internal LoginModule settings. Co-mingling LoginModule settings is bad because
each time you upgrade to a new version of JBoss, you have to re-add your
<application-policy> elements to the default login-config.xml file to make things work again.
To deploy the LoginModule configuration file to JBoss, the Ant build script copies the
jaw-login-config.xml file from the ch09-a/src/META-INF directory to the JBoss configuration
directory$JBOSS_HOME/server/default/conf. The jaw-login-config.xml file in Example 9-5 looks
just like the JBoss default login-config.xml, but our file contains only application-specific
<application-policy> elements.

Example 9-5. jaw-login-config.xml

<?xml version='1.0'?>

<!DOCTYPE policy PUBLIC

 "-//JBoss//DTD JBOSS Security Config 3.0//EN"

 "http://www.jboss.org/j2ee/dtd/security_config.dtd">

<policy>

 <application-policy name = "JawJaasDbRealm">

 <authentication>

 <login-module code =

"org.jboss.security.auth.spi.DatabaseServerLoginModule"

 flag = "required">

 <module-option name="unauthenticatedIdentity">guest</module-option>

 <module-option name="password-stacking">useFirstPass</module-option>

 <module-option name="dsJndiName">java:/JBossAtWorkDS</module-option>

 <module-option name="principalsQuery">SELECT PASSWORD FROM USER WHERE

NAME=?

 </module-option>

 <module-option name="rolesQuery">SELECT ROLE.NAME, 'Roles' FROM ROLE,

USER_ROLE, USER WHERE USER.NAME=? AND USER.ID=USER_ROLE.USER_ID AND ROLE.ID =

USER_ROLE.USER_ID</module-option>

 </login-module>

 </authentication>

 </application-policy>

</policy>

JBoss uses an MBean that reads the $JBOSS_HOME/server/default/conf/jaw-login-config.xml
file at startup time to configure its security domains. Each <application-policy> element
configures a LoginModule for a security realm. The name attribute sets the JAAS application
name to "JawJaasDbRealm". The <login-module> element configures the JBoss-specific
DatabaseServerLoginModule to query the USER and ROLE tables in the JAW Motors database to
authenticate the user. The <login-module> element's flag attribute is set to required because
we don't want to allow the user to access sensitive portions of the JAW Motors application
unless she successfully logs on to all the security realms.

The <module-option> elements for the DatabaseServerLoginModule specify LoginModule options
(JAAS-speak for initialization parameters):

unauthenticatedIdentity

The default username assigned when no authentication information is supplied. A
common use for this option is when you access an unsecured EJB or an EJB method
that isn't associated with a security role. We'll see how it works when we add in
EJB-based security toward the end of the chapter.

password-stacking

If this value is set to useFirstPass, and a previous LoginModule has already established
the user ID and password, then the DatabaseServerLoginModule does nothing.
Otherwise, the DatabaseServerLoginModule looks in the database to find the user ID and
password.

dsJndiName

The JBoss-specific JNDI name for a database's DataSource.

principalsQuery

A SQL query that selects a user's password from the JAW Motors database. The
second column, set to the constant string "Roles," is mandatoryif it's not part of the
query, the DatabaseServerLoginModule fails. The LoginModule uses the "Roles" column
internally.

rolesQuery

A SQL query that selects a user's roles from the JAW Motors database.

Since the JAW Motor's application-specific LoginModule configuration file is not part of the
default JBoss setup anymore, we need to tell JBoss to load this file at startup time. To do
this, we create a JMX MBean defined in a service filejaw-login-config-service.xml (see
Example 9-6).

Example 9-6. jaw-login-config-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE server>

<server>

 <mbean code="org.jboss.security.auth.login.DynamicLoginConfig"

 name="jboss:service=DynamicLoginConfig">

 <attribute name="AuthConfig">jaw-login-config.xml</attribute>

 <depends optional-attribute-name="LoginConfigService">

 jboss.security:service=XMLLoginConfig

 </depends>

 <depends optional-attribute-name="SecurityManagerService">

 jboss.security:service=JaasSecurityManager

 </depends>

 </mbean>

</server>

This service file, courtesy of the JBoss Wiki, configures the DynamicLoginConfig MBean so it
uses the JBoss XMLLoginConfig MBean to read the application-specific jaw-login-config.xml
and configure our LoginModule. If the DynamicLoginConfig MBean is stopped, the
JaasSecurityManager MBean logs out all the LoginModule's users by cleaning out all Subjects
(users) and Principals (roles) set by the LoginModule(s) configured in our LoginModule
configuration file. For more information on the DynamicLoginConfig MBean, visit the JBoss Wiki
at: http://wiki.jboss.org/wiki/Wiki.jsp?page=DynamicLoginConfig.

To deploy the MBean service file to JBoss, the Ant build script copies the
jaw-login-config-service.xml file from the ch09-a/src/META-INF directory to the JBoss
deployment directory$JBOSS_HOME/server/default/deploy.

9.5.3. JAAS Domain Settings in jboss-web.xml

The security domain in jboss-web.xml defines a security domain used by all web components in
the application. Later in the chapter we'll extend the security domain to protect the entire
application by including EJBs, but we don't have to worry about that right now. The
<security-domain> element used in the JBoss-specific jboss-web.xml deployment descriptor
must match the "JawJaasDbRealm" JAAS application name from login-config.xml. The
<security-domain> element comes before the elements that define the JNDI-based resources.
Here's the <security-domain> element in jboss-web.xml (Example 9-7).

Example 9-7. jboss-web.xml

<jboss-web>

 <security-domain>java:/jaas/JawJaasDbRealm</security-domain>

 ...

</jboss-web>

The <security-domain> uses java:/jaas/JawJaasDbRealm because it is the JBoss-specific JNDI
name used in jaw-login-config.xml when JBoss deploys the LoginModule as a managed service.
The pattern here is that JBoss prefixes its JAAS JNDI names with java:/jaas.

9.5.4. Automating JAAS Domain Settings in jboss-web.xml

If you'll recall from the Web chapter, we used XDoclet's Ant <webdoclet> task and its
<jbosswebxml> subtask to respectively generate the J2EE standard web.xml and jboss-web.xml
JBoss-specific EJB deployment descriptors. We now add a securitydomain attribute to the
<jbosswebxml> subtask in the webapp sub-project's build.xml (Example 9-8) to generate the
<security-domain> element in jboss-web.xml.

Example 9-8. webapp/build.xml

 ...

 <webdoclet>

 ...

 <jbosswebxml version="4.0" destdir="${gen.source.dir}"

 securitydomain="java:/jaas/JawJaasDbRealm"/>

 </webdoclet>

 ...

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://wiki.jboss.org/wiki/Wiki.jsp?page=DynamicLoginConfig
http://wiki.jboss.org/wiki/Wiki.jsp?page=DynamicLoginConfig
http://www.processtext.com/abcchm.html

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.6. Testing Secure JSPs
We've taken a lot of steps to get here, but we're now ready to take our new secure web site
for a test drive. First, let's try to access one of the protected JSPs directly. Here are the
steps to build and deploy the application:

 Type ant in the root directory of ch09-a to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory. The Ant build script also deploys:

o The MBean service file (jaw-login-config-service.xml, which tells JBoss that
we're using our own LoginModule Configuration file) to the
$JBOSS_HOME/server/default/deploy directory.

o The LoginModule Configuration file (jaw-login-config.xml) to the
$JBOSS_HOME/server/default/conf directory.

 Start JBoss back up.

 Go to the ch09-a/sql sub-directory and type ant to modify the database.

 Visit http://localhost:8080/jaw/admin/carList.jsp in a web browser.

The Servlet container should re-direct you to the login page and you'll see the login page,
/login.jsp, as shown in Figure 9-3.

Figure 9-3. JAW Motors Login page

When the user presses the "Save" button, the browser sends the user ID and password to the
Servlet Container, which validates the user's credentials against a security realm. If the user
logs in successfully, the Servlet container takes him to the "Car Inventory" page. You'll notice
that no cars are displayed because we bypassed the Controller Servlet that pulls the cars
from the database before rendering the page. Otherwise, the container sends the user to the
login error page, /loginError.jsp as depicted in Figure 9-4.

Figure 9-4. JAW Motors Login Error page

The user can either return to the login page to try another user I and password or go back to
the JAW Motors home page.

We have now successfully locked down the administrative pages, but this isn't good enough.
Now exit the browser (to end your session) and re-start your browser. Try to use the JAW
Motors web site by visiting the home page: http://localhost:8080/jaw, as shown in Figure 9-5.

Figure 9-5. JAW Motors Home page

The "View Inventory" link is new and takes you to a read-only version of the JAW Motors
Inventory page. Think of the new link and page as you would a control group for an
experiment. We want to make sure that the non-secure pages remain accessible without
logging in, and that the secure pages require you to log in before reaching them.

Use the site like you normally would, and don't circumvent the Controller with direct URLs to
the protected pages. Click on the "Modify Inventory" link from the home page, and you'll go
directly to the Car Inventory page where you can add, edit, or delete cars in the inventory.
You've just bypassed all the security we've added. At this point, you may wonder why we
bothered with the extra infrastructure if we're still unprotected. What went wrong? The JAW
Motors web site doesn't only consist of raw JSPsit uses an MVC framework to control page
flow. We have more work to dowe need to protect the URLs for administrative actions that
enable the user to add, edit, or delete cars.

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw/admin/carList.jsp
http://localhost:8080/jaw
http://localhost:8080/jaw/admin/carList.jsp
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.7. Protecting the Administrative Actions
We can continue to use J2EE Declarative Security, as shown earlier, to protect the
administrative actions like modifyCarList, addCar. To lock down the administrative actions,
we'll take steps similar to those we used to protect the JSPs:

 Associate the administrative actions with an URL pattern.

 Protect the new administrative action URL pattern.

To associate the admin actions with an URL pattern, we prefix them with admin/ in the JSPs
and in the Controller Servlet. For example, index.jsp (the main page) now invokes the
modifyCarList action through the Controller Servlet, as in Example 9-9.

Example 9-9. index.jsp

<html>

 <head>

 ...

 </head>

 <body>

 <h1>JAW Motors</h1>

 Modify Inventory

 View Inventory

 Run Credit Check

 </body>

</html>

The viewCarList action takes you to a read-only page, so it doesn't need any extra security.
To fully protect the administrative action URLs, we add a new <url-pattern> to web.xml so
that it now looks like Example 9-10.

Example 9-10. web.xml

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 JAW Application protected Admin pages and actions.

 </web-resource-name>

 <description>Require users to authenticate.</description>

 <url-pattern>/admin/*</url-pattern>

 <url-pattern>/controller/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <description>

 Allow Manager role to access Admin pages.

 </description>

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <description>JAW Managers</description>

 <role-name>Manager</role-name>

 </security-role>

 ...

The new /controller/admin/* <url-pattern> (a sub-element of <web-resource-collection>)
finally gives us what we wantit forces the user to log in before accessing secure actions. As
before, we add this new <url-pattern> element to the webapp/xdoclet/merge/web-security.xml
file, and XDoclet adds the new security to web.xml on our behalf.

9.7.1. Are We Done with Web Security Yet?

At this point, we've secured the web tier and could start testing. But as you'll see in the next
section, we need to associate security roles with both secure and non-secure action URL
patterns to propagate security credentials from the web tier to the EJB tier. We could have
added these modifications later, but we wanted to finish configuring web security before
dealing with EJBs.

9.7.2. Propagating Security Credentials from the Web Tier

Specifying an identity for an URL pattern ensures that the Servlet container automatically
propagates the correct role to the EJB container when accessing EJB methods. The EJB
Security section covers security roles and EJB methods in greater detail. The J2EE
specification does not state what happens if the web tier does not establish a user's
credentials before calling an EJB, so the JBoss LoginModules enable you to provide a default
user identity so calls to unsecured EJB methods succeed if the user hasn't logged in. Recall
from the login-config.xml section that we've set up the JBoss LoginModules with an
unauthenticated identity called "guest". Example 9-11 shows the changes we made to web.xml.

Example 9-11. web.xml

 <servlet>

 <servlet-name>SecureController</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>NonsecureController</servlet-name>

 <servlet-class>com.jbossatwork.ControllerServlet</servlet-class>

 <run-as>

 <role-name>guest</role-name>

 </run-as>

 </servlet>

 <servlet-mapping>

 <servlet-name>NonsecureController</servlet-name>

 <url-pattern>/controller/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>SecureController</servlet-name>

 <url-pattern>/controller/admin/*</url-pattern>

 </servlet-mapping>

 ...

The new <servlet-mapping> elements for the Controller Servlet ensure that:

 Any secure page or action (under the /controller/admin/* URL pattern) runs as an
authorized user roleManager.

 Any non-secure page or action (under the /controller/* URL pattern) runs as the
unauthenticated guest user identity.

9.7.3. Automating Security Credential Propagation in web.xml

In web.xml , we had to modify the <servlet> and <servlet-mapping> elements to propagate the
correct credentials from the Controller Servlet. Thus we modified the XDoclet tags in the
Controller Servlet (Example 9-12) to generate the mapping for the SecureController and
/controller/admin/* <url-pattern>.

Example 9-12. ControllerServlet.java

/**

 * @web.servlet

 * name="SecureController"

 *

 * @web.servlet-mapping

 * url-pattern="/controller/admin/*"

 *

 * ...

 */

public class ControllerServlet extends HttpServlet {

 ...

}

We also added a new <servlet-mapping> element to web.xml for non-secure URL action
patterns (NonSecureServlet). However, XDoclet doesn't provide a way to generate more than
one set of these elements for a Servlet. We could have hardcoded these elements in web.xml,
but this wouldn't fit with our Ant-based build process. So we created XDoclet merge files
called servlets.xml and servlet-mappings.xml files that contain the extra settings, and
XDoclet merges them in as it generates web.xml. You can find these files in the xdoclet/merge
directory in the ch09-b project's webapp sub-project.

9.7.4. Testing Web Security

Now that we've locked down the administrative portions of the web site, let's test our
application to ensure that everything still works properly. Here are the steps to build and
deploy the application:

 Type ant in the root directory of ch09-b to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

o Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

As advertised, clinking on the "View Inventory" link on the JAW Motors home page takes you
to a read-only version of the JAW Motors Inventory page that doesn't require you to log in
first. Clicking on the "Modify Inventory" link now takes you to the login page, and you have to
enter a valid user ID and password to gain access. After you log in successfully, the Servlet
container takes you to the Modify Inventory page. JBoss remembers your security credentials,
so once you've logged in, you don't have to re-login each time you try to access a secure
action or page. Go ahead and try to add, edit, or delete a car, and you'll see that everything
works properly. The big difference is that now you can access these pages and actions only
after you've logged into the system.

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

9.8. Web Security Checklist
Before we move on to securing the EJB tier, let's recap what we've done so far:

 Protected the administrative pages by:

o Restricting access based on the /admin/* URL pattern in web.xml

o Associating security roles with the /admin/* URL pattern in web.xml

o Moving the administrative pages beneath the /admin sub-directory in WEB INF

o Creating security roles for the JAW Motors application in web.xml

 Implemented FORM-based Authentication by:

o Adding a <login-config> element to web.xml and tying it to a security realm

o Creating a login page, login.jsp with a form that follows FORM-based
Authentication naming conventions

o Developing a login error pageloginerror.jsp

 Automated extra web.xml settings with the servlets.xml, servlet-mappings.xml, and
web-security.xml XDoclet merge files

 Created a security realm in the JAW Motors database that associates a user with the
roles they play in the system

 Deployed the JAAS-based security realm with the JBoss container by:

o Configuring a JAAS LoginModule that's tied to the database security realm using
$JBOSS_HOME/server/default/conf/$JBOSS_HOME/server/default/conf and
$JBOSS_HOME/server/default/deploy/jaw-login-config-service.xml

o Adding the JAAS domain settings to jboss-web.xml

 Added a read-only page and MVC action to ensure that we can still access non-secure
resources without logging in

 Protected MV administrative actions by:

o Modifying JSPs and the Controller Servlet to prefix all administrative action URLs
with /admin/

o Modifying web.xml with the new /controller/admin/* <url-pattern> element to
lock down the administrative action URLs

 Propagated the correct user credentials from the web tier:

Established a default guest user identity for non-secure actions and pages in web.xml

 Used the Manager identity for secure actions and pages in web.xml

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

9.9. Integrating Web Tier and EJB Tier Security
It's taken a while to get here, but now that we've secured the web tier, we have the core
infrastructure in place to secure the rest of the JAW Motors application. Although we've
protected access to the InventoryFacadeBean EJB through the Controller Servlet in the web
application, the EJB is still vulnerable. Unauthenticated/unauthorized external applications
could look up the InventoryFacadeBean and access its administrative methodssaveCars() and
deleteCars(). We must protect the EJB tier by securing the administrative methods on the
InventoryFacadeBean, yet still allow non-secure access to the non-administrative methods
listAvailableCars(), findCar(), and buyCar(). We'll show how the JBoss security manager,
in keeping with the J2EE specification, propagates the user's credentials from the web tier to
the EJB container. We now discuss EJB security in greater detail.

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.10. EJB Security
To secure the EJB tier, we need to do the following:

 Deploy the JAAS-based security realm with the JBoss container.

 Protect the EJB:

o Allow access to non-secure methods.

o Configure access to administrative methods.

o Add security roles.

 Automate extra ejb-jar.xml settings with XDoclet.

9.10.1. JAAS Domain in jboss.xml

The security domain in jboss.xml defines a security domain used by all EJBs in the application.
To join the global security domain for the entire JAW Motors application, the security domain
must match the "JawJaasDbRealm" JAAS application name from login-config.xml and the
<security-domain> element in jboss-web.xml. The <security-domain> element defines a single
security domain used by all EJBs in the application. The <security-domain> element comes
before the elements that define the JNDI-based resources. Example 9-13 shows the
<security-domain> element in jboss.xml.

Example 9-13. jboss.xml

<jboss>

 <security-domain>java:/jaas/JawJaasDbRealm</security-domain>

 ...

</jboss>

The <security-domain> uses java:/jaas/JawJaasDbRealm because it is the JBoss-specific JNDI
name used when JBoss deploys the LoginModule as a managed service. The pattern here is
that JBoss prefixes its JAAS JNDI names with java:/jaas.

9.10.2. Automating JAAS Domain Settings in jboss.xml

If you recall from the Session Bean chapter, we used XDoclet's Ant <ejbdoclet> task and its
<jboss> subtask to generate the J2EE standard ejb-jar.xml and jboss.xml JBoss-specific EJB
deployment descriptors, respectively. We now add a securitydomain attribute to the <jboss>
subtask in the ejb sub-project's build.xml (Example 9-14) to generate the <security-domain>
element in jboss.xml.

Example 9-14. ejb/build.xml

 ...

 <ejbdoclet>

 ...

 <jboss version="4.0" destdir="${gen.source.dir}"

 securitydomain="java:/jaas/JawJaasDbRealm"/>

 </ejbdoclet>

 ...

9.10.3. Protecting EJBs with ejb-jar.xml

J2EE provides Declarative Security, so we modify ejb-jar.xml in Example 9-15 to configure EJB
security.

Example 9-15. ejb-jar.xml

<enterprise-beans>

 <session>

 ...

 <ejb-name>InventoryFacade</ejb-name>

 ...

 </session>

 ...

</enterprise-beans>

...

 <!-- Assembly Descriptor -->

 <assembly-descriptor>

 <security-role>

 <role-name>Manager</role-name>

 </security-role>

 <security-role>

 <role-name>guest</role-name>

 </security-role>

 ...

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>create</method-name>

 <method-params>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>create</method-name>

 <method-params>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>listAvailableCars</method-name>

 <method-params>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>listAvailableCars</method-name>

 <method-params>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>findCar</method-name>

 <method-params>

 <method-param>int</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>findCar</method-name>

 <method-params>

 <method-param>int</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>deleteCars</method-name>

 <method-params>

 <method-param>java.lang.String[]</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>deleteCars</method-name>

 <method-params>

 <method-param>java.lang.String[]</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>saveCar</method-name>

 <method-params>

 <method-param> com.jbossatwork.dto.CarDTO</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>saveCar</method-name>

 <method-params>

 <method-param>com.jbossatwork.dto.CarDTO</method-param>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Local</method-intf>

 <method-name>buyCar</method-name>

 <method-params>

 <method-param>int</method-param>

 <method-param>double</method-param>>

 </method-params>

 </method>

 </method-permission>

 <method-permission>

 <role-name>guest</role-name>

 <role-name>Manager</role-name>

 <method>

 <ejb-name>InventoryFacade</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>buyCar</method-name>

 <method-params>

 <method-param>int</method-param>

 <method-param>double</method-param>

 </method-params>

 </method>

 </method-permission>

 ...

</assembly-descriptor>

As we did in web.xml, we're creating <security-role> elements for the guest and Manager
security roles in the JAW Motors application. The <security-role-ref> elements define the
security roles (guest, Manager) for the InventoryFacade Bean. The <method-permission>
elements specify that:

 Only users with the (unauthenticated) guest or (authenticated and authorized) Manager
roles can invoke the non-secure create(), listAvailableCars(), findCar(), and
buyCar() methods when using the Remote and Local Component Interface.

 Only users with the (authorized) Manager roles can invoke the administrative/secure
deleteCars() and saveCar() method when using the Remote and Local Component
Interface.

These security settings in ejb-jar.xml ensure that someone with the Manager role has full
access to both the secure and non-secure methods in InventoryFacadeBean, and that a guest
user can only create the EJB and access its non-secure methods.

What About EJB-Based Programmatic Security?

The EJB API enables you to go farther with security and add more fine-grained
control to resources that use the following methods on javax.ejb.EJBContext:

 isCallerInRole()

 getCallerPrincipal()

These methods determine the caller's identity or whether she plays a particular
role in the system.

We don't want to use Programmatic Security in the EJB Tier for the same reasons
why we didn't use it in the Web Tier. We'd rather let the container do the work so
we can avoid writing our own infrastructure.

9.10.4. Automating EJB Security Settings with XDoclet

We already have an Ant-based build process that works with XDoclet, so we just have to add
a couple of XDoclet tags to the InventoryFacadeBean in Example 9-16 so the Ant build process
generates the new security settings in the ejb-jar.xml J2EE standard EJB deployment
descriptor.

Example 9-16. InventoryFacadeBean.java

/**

 * ...

 *

 * @ejb.security-role-ref

 * role-name="Manager"

 * role-link="Manager"

 *

 * @ejb.security-role-ref

 * role-name="guest"

 * role-link="guest"

 */

public class InventoryFacadeBean implements SessionBean {

 ...

 /**

 * @ejb.create-method

 * @ejb.permission

 * role-name="guest,Manager"

 *

 */

 public void ejbCreate() throws CreateException { }

 ...

 /**

 * ...

 * @ejb.permission

 * role-name="guest,Manager"

 *

 */

 public List listAvailableCars() throws EJBException {

 ...

 }

 ...

 /**

 * ...

 * @ejb.permission

 * role-name="guest,Manager"

 *

 */

 public CarDTO findCar(int id) throws EJBException {

 ...

 }

 /**

 * ...

 * @ejb.permission

 * role-name="Manager"

 *

 */

 public void deleteCars(String[] ids) throws EJBException {

 ...

 }

 /**

 * ...

 * @ejb.permission

 * role-name="Manager"

 *

 */

 public void saveCar(CarDTO car) throws EJBException {

 ...

 }

 /**

 * ...

 * @ejb.permission

 * role-name="guest,Manager"

 *

 */

 public void buyCar(int carId, double price) throws EJBException {

 ...

 }

}

The class-level @ejb.security-role-ref XDoclet tags associate the InventoryFacade Bean with
the Manager security role. The @ejb.permission tag on the ejbCreate(), listAvailableCars(),
findCar(), and buyCar() methods makes them accessible only to users in the guest and
Manager roles. The @ejb.permission tag on the deleteCars() and saveCar() methods makes
them accessible only to users in the Manager role.

9.10.5. Testing Secure EJB Methods

Now that we've propagated the correct user credentials and restricted access to the
InventoryFacadeBean's secure methods, let's test our application to ensure that everything still
works properly. Here are the steps you should follow to build and deploy the application:

 Type ant in the root directory of ch09-c to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

 Visit http://localhost:8080/jaw in a web browser.

Click on the "Modify Inventory" link on the JAW Motors home page and everything should work
properly.

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

9.11. EJB Security Checklist
To secure the EJB tier, we did the following:

 Deployed the JAAS-based security realm with the JBoss container.

 Protected the EJB in ejb-jar.xml:

o Added security roles.

o Allowed callers with the unauthenticated guest or authorized Manager role to
access non-secure methods.

o Restricted access to administrative methods to users in the Manager role.

 Automated extra ejb-jar.xml settings with XDoclet.

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

9.12. Looking Ahead ...
In this chapter, we secured the "Car Inventory" and "Add/Edit Car" pages so that only
authorized users can modify cars in the inventory. We discussed J2EE web-based security,
JAAS, and EJB security. Along the way, we showed how to deploy these security mechanisms
on JBoss.

We've developed and secured the JAW Motors application. In the next and final chapter, we'll
show how to expose a portion of the application as a Web service.

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 10. Web Services
JAW Motors has a fully functional, secure J2EE-based web site and the business is doing well.
Harry Schmidlap, the company President, now wants to expand JAW Motors' business beyond
the web site and boost sales by displaying its inventory on other related web sites. Another
company, Virtual Big Auto Dealership (VBAD), has a high-traffic web site that consolidates the
inventory of many auto dealerships. Thousands of customers use VBAD's service to find and
purchase cars. Mr. Schmidlap views VBAD as an ideal trading partner due to the sheer volume
of potential new customers they could bring to JAW Motors.

One problem currently prevents JAW Motors from sharing its inventoryVBAD doesn't use J2EE.
So none of the technologies we've shown so far will enable JAW Motors and VBAD to
communicate. But VBAD has an experienced IS staff and knows how to use Web Services. Mr.
Schmidlap has instructed Gunther Toady (with apologies to the restaurant chain and the cast
of "Car 54, Where are You?"), the JAW Motors CTO, to look into Web Services and report back
to the Board of Directors within two weeks with his results and findings.

This chapter shows how to deploy a portion of the JAW Motors application as a Web Service
so it can work with non-Java clients. We'll show how to expose an EJB as a Web Service by
using XDoclet and Java Web Services Developer Pack (JWSDP) to deploy it on JBoss. We'll
finish by writing an Axis client that uses/consumes our Web Service.

Although we're going to show all deployment descriptors, including the WSDL, we're not
covering them in any depth because our focus is on how to deploy a J2EE-based Web Service.
We recommend J2EE Web Services by Richard Monson-Haefel, if you want to know the gory
details of WSDL and you'd like a detailed description of all the elements in the Web Service
deployment descriptors.

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.1. Web Services Architecture
Figure 10-1 shows how the VBAD client uses Web Services to access the JAW Motors
inventory.

Figure 10-1. Web Service invocation

VBAD's web site acts as an external client that invokes the JAW Motors findAvailableCars()
Web Service to get information about all JAW Motors cars. Underneath the covers, the client
uses a Web Service proxy object to marshal the method findAvailableCars() call as a Simple
Object Access Protocol (SOAP) Request and sends it to the JBoss application server. The
SOAP Servlet picks up the SOAP Request, looks up the findAvailableCars service in the Web
Services Definition Language (WSDL) file and invokes the findAvailableCars() method on
behalf of the client. The findAvailableCars() method finds all unsold cars in the JAW Motors
database, packages them into CarDTO objects, and returns control to the SOAP Servlet. The
SOAP Servlet then marshals the CarDTO objects into a SOAP Response and returns it to the
caller. On the client side, the Web Service proxy object unmarshals the SOAP Response into
CarDTO objects to be displayed on the VBAD web site.

Web Services has its own terminology, so let's wade through the alphabet soup:

SOAP

SOAP is an XML-based, platform-neutral, wire protocol that enables remote
communication. Client and server communicate using SOAP Messages that contain a
Header and a Body. The Header has routing information and the Body holds the
request/response data.

WSDL

WSDL is an XML-based interface descriptor that describes a web service interface
along with its parameters. WSDL registers your Web Service with your server in the
same way web.xml registers Servlets and ejb-jar.xml registers EJBs.

Web Service Proxy

A Web Service Proxy is a set of objects that work together to encapsulate low-level
SOAP communication details and invokes a Web Service on behalf of a client. The
client just uses the Web Service proxy and is oblivious to the low-level network API.
SOAP toolkits are available for most programming languages that use the WSDL (for the
Web Service) to generate Web Service proxy code for that language.

SOAP Servlet

As of J2EE 1.4, most application servers use a Servlet to listen for SOAP Requests,
route them to a Web Service, and return the result(s) as a SOAP Response.

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.2. JBoss 4.x and Web Services
In previous versions of JBoss (pre 4.x), developers deployed Web Services by using a
JBoss-specific tool called JBoss.NET (not to be confused with Microsoft .NET). Although
JBoss.Net worked well and provided a highly automated way to create Web Services on JBoss,
it was proprietary technology. In JBoss 4.x, JBoss.Net is deprecated in favor of JBossWS,
JBoss's new J2EE 1.4-compliant Web Service implementation. JBossWS is based on Apache
Axis (http://ws.apache.org/axis) and uses J2EE standard deployment descriptors and
technologies.

JBoss and Web Services Issues

Bugs are a fact of life, and even though JBoss is an excellent product, JBoss 4.0.0
and 4.0.1 have problems deploying Web Services that use Custom Data types.
Specifically, these versions of JBoss can't find serializers that convert custom data
types between Java and WSDL. So you can't access Web Services that use
Custom Data types with JBoss 4.0.0 and 4.0.1. This problem is fixed in JBoss
4.0.1sp1, so as long you use JBoss 4.0.1sp1 or later, everything will work properly.

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://ws.apache.org/axis
http://www.processtext.com/abcchm.html
http://ws.apache.org/axis
http://www.processtext.com/abcchm.html

10.3. J2EE 1.4 and Web Services
The main purpose of the J2EE 1.4 specification was to standardize Web Service deployment so
Web Services would be portable and interoperable. With J2EE 1.4, you now use a set of
standard deployment descriptors to deploy a Web Service so it can be deployed on any
J2EE-compliant application server. The J2EE 1.4 specification mandates interoperability with
other platforms, so a Web Service deployed on a J2EE application server will work and be
compatible with non-Java clients written in: C#, Python, Perl, C++, and so on.

We'll introduce the new J2EE-Web Service deployment descriptors as we go through the
process of deploying JAW Motors Inventory-related Web Services. On the server-side, we
have to create a Service Endpoint Interface and register it with the deployment descriptors.
In J2EE 1.4, you can implement a Service Endpoint as a Servlet or POJO deployed in a WAR
file, or as a Stateless Session Bean, but we'll limit our discussion to EJB Service Endpoints.

Let's start by working our way down through the architecture.

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.4. Implementing J2EE 1.4 Web Services
To expose the InventoryFacadeBean's findAvailableCars() method as a J2EE 1.4-compliant
Web Service, we need to do the following:

 Create a Service Endpoint Interface (SEI) to expose EJB methods as Web Service
operations.

 Add a <service-endpoint> element to ejb-jar.xml to tell JBoss that the
InventoryFacadeBean EJB implements the InventoryEndpoint Service Endpoint Interface.

 Generate the webservices.xml to register the Web Service and tie the
InventoryEndpoint Service Endpoint Interface to an implementation the
InventoryFacadeBean.

 Create the JAX-RPC Mapping File to define JAX-RPC type mappings for the parameters
and return values for the InventoryEndpoint's methods.

 Generate the WSDL to define the Web Service and tie it to XML Schema data types.

 Set the Web Service URL by modifying jboss.xml with the Inventory Web Service URL.

 Modify the InventoryFacadeBean:

o Add Web Services-related XDoclet tags.

o Add the findAvailableCars() method and use an XML Schema-compatible data
type.%

 Upgrade Deployment by modifying the Ant build script:

o Fix XDoclet-generated descriptors.

o Modify the Web Service URL in jboss.xml.

o Use JWSDP to generate the JAX-RPC and WSDL files.

As you'll see in the upcoming sections, the extra interface and descriptors required to deploy
a Web Service are tedious and would be almost impossible to develop by hand. But don't lose
heartwe can automate Web Service deployment with a combination of Ant, XDoclet, and
JWSDP. However, before we show our new deployment process, it's important to know what
we're automatinglet's start with the Service Endpoint Interface.

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.5. Service Endpoint Interface (SEI)
A Service Endpoint Interface exposes business methods as Web Services that can be
accessed by external clients. Example 10-1 shows the InventoryService interface.

Example 10-1. InventoryEndpoint.java

package com.jbossatwork.ws;

/**

 * Service endpoint interface for InventoryFacade.

 */

public interface InventoryEndpoint

 extends java.rmi.Remote

{

 public com.jbossatwork.ws.CarDTOArray findAvailableCars()

 throws java.rmi.RemoteException;

}

A Service Endpoint Interface acts as a server-side stub that shows your business methods to
clients and serves the same purpose for a Web Service that an EJB Remote Interface does for
an EJB. The InventoryEndpoint interface is a Remote interface, and the findAvailableCars()
method throws a RemoteException. The CarDTOArray (that holds an array of CarDTO objects)
returned by the findAvailableCars() method may look odd to yousee the "Web Services and
Collections" section for more information.

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.6. Modifying ejb-jar.xml
Although we're already generating the J2EE-standard ejb-jar.xml descriptor to deploy EJBs,
we have to add a <service-endpoint> element to Example 10-2 to tell JBoss that the
InventoryFacadeBean EJB implements the InventoryEndpoint interface.

Example 10-2. ejb-jar.xml

 <enterprise-beans>

 ...

 <session>

 ...

 <display-name>InventoryFacadeSB</display-name>

 <ejb-name>InventoryFacade</ejb-name>

 ...

<service-endpoint>com.jbossatwork.ws.InventoryEndpoint</service-endpoint>

 ...

 </session>

 ...

 </enterprise-beans>

Now that we've created a Web Service Endpoint, we have to register it with JBoss.

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.7. webservices.xml
The J2EE-standard webservices.xml file defines and registers the InventoryService Web
Service, and ties the Service Endpoint Interface class (com.jbossatwork.ws.InventoryEndpoint)
to the InventoryFacadeBean EJB. The webservices.xml file in Example 10-3 also tells JBoss
where to find the WSDL and JAX-RPC Mapping files in the EJB JAR file.

Example 10-3. webservices.xml

<?xml version="1.0" encoding="UTF-8"?>

<webservices

 xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"

 version="1.1">

 <webservice-description>

<webservice-description-name>InventoryService</webservice-description-name>

 <wsdl-file>META-INF/wsdl/InventoryService.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/inventory-mapping.xml</jaxrpc-mapping-file>

 <port-component>

 <port-component-name>Inventory</port-component-name>

 <wsdl-port>InventoryEndpointPort</wsdl-port>

 <service-endpoint-interface>

 com.jbossatwork.ws.InventoryEndpoint

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>InventoryFacade</ejb-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

We've registered the Web Service endpoint and told the server about the JAX-RPC mapping
and WSDL files, and now we need to create these extra descriptors.

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
http://www.processtext.com/abcchm.html

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.8. JAX-RPC Mapping File
The J2EE-standard JAX-RPC mapping file helps the JAX-RPC compiler map Java objects to
WSDL objects. If the Java objects are complex, the JAX-RPC and WSDL files also will be
complex. Example 10-4 is the inventory-mapping.xml JAX-RPC mapping file that the JAW
Motors application uses.

Example 10-4. inventory-mapping.xml

<?xml version="1.0" encoding="UTF-8"?>

<java-wsdl-mapping xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"

version="1.1">

 <package-mapping>

 <package-type>com.jbossatwork.ws</package-type>

 <namespaceURI>http://localhost:8080/jbossatwork-ws/types</namespaceURI>

 </package-mapping>

 <package-mapping>

 <package-type>com.jbossatwork.ws</package-type>

 <namespaceURI>http://localhost:8080/jbossatwork-ws</namespaceURI>

 </package-mapping>

 <java-xml-type-mapping>

 <java-type>com.jbossatwork.dto.CarDTOArray</java-type>

 <root-type-qname

xmlns:typeNS="http://localhost:8080/jbossatwork-ws/types">

 typeNS:CarDTOArray

 </root-type-qname>

 <qname-scope>complexType</qname-scope>

 <variable-mapping>

 <java-variable-name>cars</java-variable-name>

 <xml-element-name>cars</xml-element-name>

 </variable-mapping>

 </java-xml-type-mapping>

 <java-xml-type-mapping>

 <java-type>com.jbossatwork.dto.CarDTO</java-type>

 <root-type-qname

xmlns:typeNS="http://localhost:8080/jbossatwork-ws/types">

 typeNS:CarDTO

 </root-type-qname>

 <qname-scope>complexType</qname-scope>

 <variable-mapping>

 <java-variable-name>id</java-variable-name>

 <xml-element-name>id</xml-element-name>

 </variable-mapping>

 <variable-mapping>

 <java-variable-name>make</java-variable-name>

 <xml-element-name>make</xml-element-name>

 </variable-mapping>

 <variable-mapping>

 <java-variable-name>model</java-variable-name>

 <xml-element-name>model</xml-element-name>

 </variable-mapping>

 <variable-mapping>

 <java-variable-name>modelYear</java-variable-name>

 <xml-element-name>modelYear</xml-element-name>

 </variable-mapping>

 <variable-mapping>

 <java-variable-name>status</java-variable-name>

 <xml-element-name>status</xml-element-name>

 </variable-mapping>

 </java-xml-type-mapping>

 <service-interface-mapping>

 <service-interface>com.jbossatwork.ws.InventoryService</service-interface>

 <wsdl-service-name xmlns:serviceNS="http://localhost:8080/jbossatwork-ws">

 serviceNS:InventoryService

 </wsdl-service-name>

 <port-mapping>

 <port-name>InventoryEndpointPort</port-name>

 <java-port-name>InventoryEndpointPort</java-port-name>

 </port-mapping>

 </service-interface-mapping>

 <service-endpoint-interface-mapping>

 <service-endpoint-interface>

 com.jbossatwork.ws.InventoryEndpoint

 </service-endpoint-interface>

 <wsdl-port-type xmlns:portTypeNS="http://localhost:8080/jbossatwork-ws">

 portTypeNS:InventoryEndpoint

 </wsdl-port-type>

 <wsdl-binding xmlns:bindingNS="http://localhost:8080/jbossatwork-ws">

 bindingNS:InventoryEndpointBinding

 </wsdl-binding>

 <service-endpoint-method-mapping>

 <java-method-name>findAvailableCars</java-method-name>

 <wsdl-operation>findAvailableCars</wsdl-operation>

 <wsdl-return-value-mapping>

<method-return-value>com.jbossatwork.dto.CarDTOArray</method-return-value>

 <wsdl-message xmlns:wsdlMsgNS="http://localhost:8080/jbossatwork-ws">

 wsdlMsgNS:InventoryEndpoint_findAvailableCarsResponse

 </wsdl-message>

 <wsdl-message-part-name>result</wsdl-message-part-name>

 </wsdl-return-value-mapping>

 </service-endpoint-method-mapping>

 </service-endpoint-interface-mapping>

</java-wsdl-mapping>

This JAX-RPC mapping file tells JBoss that the InventoryEndpoint Service Endpoint Interface
has a findAvailableCars() method that takes no parameters and returns a CarDTOArray.

Mapping between WSDL data types and Java object types is tedious. Notice how one return
type, CarDTOArray, explodes into two <java-xml-type-mapping> elementsone for the CarDTOArray
itself and the other for the CarDTO. Besides mapping a Java object to a WSDL data type, each
<java-xml-type-mapping> element lists each of the object's data members with a
<variable-mapping> sub-element.

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"
http://www.processtext.com/abcchm.html

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.9. WSDL File
The WSDL file describes a Web Service interface along with its parameters and registers the
web service with JBoss. If you thought the previous descriptors were tedious and painful to
look at, then you're in for a treatthe WSDL file is much worse. Example 10-5 is the
InventoryService.wsdl WSDL file used to deploy the Inventory Web Services.

Example 10-5. InventoryService.wsdl

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="InventoryService"

targetNamespace="http://localhost:8080/jbossatwork-ws"

xmlns:tns="http://localhost:8080/jbossatwork-ws"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns2="http://localhost:8080/jbossatwork-ws/types"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <types>

 <schema targetNamespace="http://localhost:8080/jbossatwork-ws/types"

 xmlns:tns=http://localhost:8080/jbossatwork-ws/types

 xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="CarDTOArray">

 <sequence>

 <element name="cars" type="tns:CarDTO" nillable="true" minOccurs="0"

 maxOccurs="unbounded"/></sequence></complexType>

 <complexType name="CarDTO">

 <sequence>

 <element name="id" type="int"/>

 <element name="make" type="string" nillable="true"/>

 <element name="model" type="string" nillable="true"/>

 <element name="modelYear" type="string" nillable="true"/>

 <element name="status" type="string"

 nillable="true"/>

 </sequence>

 </complexType>

 </schema>

 </types>

 <message name="InventoryEndpoint_findAvailableCars"/>

 <message name="InventoryEndpoint_findAvailableCarsResponse">

 <part name="result" type="ns2:CarDTOArray"/></message>

 <portType name="InventoryEndpoint">

 <operation name="findAvailableCars">

 <input message="tns:InventoryEndpoint_findAvailableCars"/>

 <output message="tns:InventoryEndpoint_findAvailableCarsResponse"/>

 </operation>

 </portType>

 <binding name="InventoryEndpointBinding" type="tns:InventoryEndpoint">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>

 <operation name="findAvailableCars">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"

namespace="http://localhost:8080/jbossatwork-ws"/>

 </input>

 <output>

 <soap:body use="literal"

namespace="http://localhost:8080/jbossatwork-ws"/>

 </output>

 </operation>

 </binding>

 <service name="InventoryService">

 <port name="InventoryEndpointPort" binding="tns:InventoryEndpointBinding">

 <soap:address location="REPLACE_WITH_ACTUAL_URL"/>

 </port>

 </service>

</definitions>

This WSDL file ties the InventoryService web service to the InventoryEndpoint interface and
maps the CarDTO and CarDTOArray WSDL types to XSD data types. In the Client section, we'll
use the WSDL file to generate proxy code that encapsulates the details of communicating
with the Web Service.

The following line in the WSDL file tells JBoss that it can choose its own URL for the web
service:

<soap:address location="REPLACE_WITH_ACTUAL_URL"/>

By default, JBoss deploys our WSDL to the following URL:

http://localhost:8080/jaw/ejb/Inventory?wsdl

But we don't like the URL that JBoss uses, and we want to set the URL ourselves so it's
meaningful to our clients.

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw/ejb/Inventory?wsdl
http://localhost:8080/jaw/ejb/Inventory?wsdl
http://www.processtext.com/abcchm.html

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.10. Set the Web Service URL
We want to use a meaningful URL that matches our Web Services namespacejbossatwork-ws.
So we modify jboss.xml in Example 10-6 (the JBoss-specific EJB deployment descriptor) as
follows.

Example 10-6. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS 4.0//EN"

 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>

 <enterprise-beans>

 ...

 <session>

 <ejb-name>InventoryFacade</ejb-name>

 <port-component>

 <port-component-name>Inventory</port-component-name>

<port-component-uri>jbossatwork-ws/InventoryService</port-component-uri>

 </port-component>

 ...

 </session>

 ...

 </enterprise-beans>

 ...

</jboss>

The <port-component>element and its sub-elements tell JBoss to deploy our WSDL to the
jbossatwork-ws namespace at the following URL:

http://localhost:8080/jbossatwork-ws/InventoryService?wsdl

Although modifying the jboss.xml file to set the URL is helpful, it is purely optional. You could
successfully deploy a Web Service without changing jboss.xml.

At this point we've shown all the Web Services -related deployment descriptors. We now have
to upgrade InventoryFacadeBean to expose its findAvailableCars() method as a Web Service.

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://www.processtext.com/abcchm.html

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.11. Modifying the InventoryFacadeBean EJB
Example 10-7 shows the new and upgraded XDoclet tags in the InventoryFacadeBean EJB that
support Web Services deployment.

Example 10-7. InventoryFacadeBean.java

/**

 * @ejb.bean

 * name="InventoryFacade"

 * ...

 * view-type="all"

 * ...

 *

 * @wsee.port-component

 * name="Inventory"

 * wsdl-port="InventoryEndpointPort"

 * service-endpoint-interface="com.jbossatwork.ws.InventoryEndpoint"

 * service-endpoint-bean="com.jbossatwork.ejb.InventoryFacadeBean"

 *

 * @ejb.interface

 * service-endpoint-class="com.jbossatwork.ws.InventoryEndpoint"

 *

 */

public class InventoryFacadeBean implements SessionBean {

 ...

 /**

 * @ejb.interface-method

 * view-type="all"

 * ...

 *

 */

 public CarDTOArray findAvailableCars() throws EJBException {

 CarDTOArray carDTOArray = new CarDTOArray();

 CarDTO[] cars = (CarDTO[]) listAvailableCars().toArray(new

CarDTO[0]);

 carDTOArray.setCars(cars);

 return carDTOArray;

 }

 /**

 * @ejb.interface-method

 * view-type="both"

 * ...

 *

 */

 public List listAvailableCars() throws EJBException {

 ...

 }

 ...

}

We've added a new method called findAvailableCars() that we're exposing as a Web
Service. This method doesn't do muchit wraps the call to the listAvailableCars() method
(which won't be used as a Web Service) and converts its return value (a java.util.List) to
a CarDTOArray. We added the findAvailableCars() method because Java 2 Collections are
incompatible with J2EE 1.4 Web Services, and we didn't want to change the existing
listAvailableCars() method. See the "Web Services Data Types" and "Web Services and
Collections" sections for more details.

Setting the view-type to all in the class-level @ejb.bean tag tells XDoclet to generate the
Service Endpoint Interface along with the EJB Remote and Local Component interfaces. The
new class-level @ejb.interface tag specifies the Java file for the Service Endpoint Interface
com.jbossatwork.ws.InventoryEndpoint. In addition to generating the Service Endpoint
Interface, we have to tell XDoclet which method to include and which methods to exclude.
Thus we include the findAvailableCars() method in the Service Endpoint Interface along with
the EJB Remote and Local Component interfaces by setting the view-type to all in their
method-level @ejb.interface-method tags. We exclude all other business methods (such as
listAvailableCars()) from the Service Endpoint Interface by setting the view-type to both in
their method-level @ejb.interface-method tags. That way, these business methods show up
only in the EJB Remote and Local Component interface files.

The class-level @wsee.port-component tag provides data that XDoclet uses to generate the
webservices.xml file so it can associate the InventoryFacadeBean EJB with the
InventoryEndpoint Service Endpoint Interface.

10.11.1. Web Services Data Types

We've now shown all the steps needed to deploy a Web Service, and at this point we'd love
to close our eyes and declare success, but that wouldn't be honest. We could have just
shown a simplistic "Hello World" Web Service method like Example 10-8.

Example 10-8. HelloWorldEndpoint.java

 ...

 public void hello() throws java.rmi.RemoteException {

 }

 ...

The hello() method doesn't return anything, nor does it take any parameters. We could have
also shown the same method using primitive Java data types (such as int, float, or boolean),
Java wrappers (such as Integer, Float, or Boolean), or java.lang.String, but that's not
realistic. In our everyday jobs, we develop Java objects for our application domain and use
them as parameters and return values for our business methods. So rather than shying away
from the hard issues of exchanging custom Java objects through a Web Service, we have a
method like Example 10-9.

Example 10-9. InventoryEndpoint.java

 ...

 public com.jbossatwork.dto.CarDTOArray findAvailableCars()

 throws java.rmi.RemoteException;

 ...

The findAvailableCars() method returns a CarDTOArray object that encapsulates an array of
CarDTO objects. We'll cover the CarDTOArray in greater detail in the "Web Services and
Collections" section, but if you can exchange custom data types and arrays of custom data
types, then you can do anything else. This is easy once you understand the rules for
serializing and deserializing custom objects. Each application-specific class must follow the
JavaBeans conventions:

 It must have a default constructor.

 Each private or protected data member must have a corresponding public getter and
setter.

For example, the CarDTO's make data member is a String, so the getter and setter must look
like Example 10-10.

Example 10-10. CarDTO.java

 private String make;

 ...

 public String getMake()

 {

 return make;

 }

 public void setMake(String make)

 {

 this.make = make;

 }

10.11.2. Web Services and Collections

J2EE Web Services can't exchange Java 2 Collections or arrays of custom data types due to
portability concerns. WSDL uses XML Schema data types but it has no mappings for
Collections or arrays of application-specific types. To get around these restrictions, we wrap
an array of CarDTOs in a CarDTOArray object in Example 10-11 that follows the Java Bean
conventions.

Example 10-11. CarDTOArray.java

package com.jbossatwork.dto;

import java.io.Serializable;

import com.jbossatwork.dto.CarDTO;

public class CarDTOArray implements Serializable {

 private CarDTO[] cars;

 public CarDTOArray() { }

 public CarDTO[] getCars() {

 return cars;

 }

 public void setCars(CarDTO[] cars) {

 this.cars = cars;

 }

}

Wrapping an array of DTOs in a JavaBean is inconvenient and tedious, but sometimes you
have to sacrifice for the sake of interoperability. Remember that the main reason for Web
Services is that it provides the ability for a service written in one programming language to be
used by clients written in other languages.

We've shown all the components to deploy an EJB as a Web Service, but where do all the
pieces belong?

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.12. Web Services Deployment
The new files go into the EJB JAR file as follows:

 In addition to the ejb-jar.xml, jboss.xml, and JAR Manifest files, the META-INF directory
now contains webservices.xml and inventory-mapping.xml (the JAX-RPC mapping file).
The WSDL file, InventoryService.wsdl, is in META-INF/wsdl.

 The com/jbossatwork/ws directory holds the InventoryService (Service Endpoint
Interface) class file.

 Everything else remains unchanged.

The new CarDTOArray object class has been added to the com.jbossatwork.dto package, so its
class file resides in the Common JAR's com/jbossatwork/dto directory.

At this point, we've shown all the Web Services-related deployment descriptors and upgraded
InventoryFacadeBean. Let's show how to generate the descriptors and package the Web
Service for deployment with Ant, XDoclet, and JWSDP.

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.13. Automating Web Services Deployment
As we've seen so far, deploying a Web Service requires writing very little code (just the
Service Endpoint Interface), but it adds a complex set of deployment issues:

 Create three new descriptors (webservices.xml, the JAX-RPC Mapping file, and the
WSDL file)

 Modify both EJB deployment descriptors (ejb-jar.xml and jboss.xml).

Although it's possible to develop everything by hand, it's not very practical because the new
deployment descriptors are interrelated, and the XML elements are tedious and error-prone. In
previous chapters, we've automated everything with Ant and XDoclet, but the current XDoclet
version, XDoclet 1.2.3, falls short when it comes to Web Services. XDoclet has Ant tasks that
are supposed to generate the JAX-RPC Mapping and WSDL files, but these XDoclet tasks don't
work properly. Bug reports have been submitted to the XDoclet project, and we hope to see a
resolution to these issues in the next production version of XDoclet. As you'll see in the "Web
Services Ant Script" section, we'll add another technology to our toolkitthe Java Web Services
Developer's Pack (JWSDP)to complete our deployment by generating the JAX-RPC Mapping and
WSDL files. Even though XDoclet doesn't do everything, we still use it to generate the Service
Endpoint Interface, modify ejb-jar.xml, and generate webservices.xml.

Before you can use the JWSDP from our Ant build script, you need to download JWSDP 1.5
from http://java.sun.com/webservices/downloads/webservicespack.html and add the JAR files
to your CLASSPATH by doing one of the following:

 In the Ant build script below, set the jwsdp.lib.dir property to your JWSDP 1.5
installation.

 Copy the libsub-directory from your Axis 1.1 installation to /Library/jwsdp-1.5/ (the
jwsdp.lib.dir property in the Ant build script currently points to /Library/jwsdp-1.5).

10.13.1. Web Services Ant Script

We now modify the EJB deployment process to include Web Service deployment. Example
10-12 shows the upgraded build.xml script from the ejb sub-project.

Example 10-12. ejb/build.xml

 ...

 <property name="jwsdp.lib.dir" value="/Library/jwsdp-1.5"/>

 ...

 <target name="run-ejbdoclet" ...>

 <ejbdoclet ...>

 ...

 <service-endpoint/>

 ...

 </ejbdoclet>

 <!-- Fix problems with XDoclet-generated Service Endpoint Interface -->

 <replace

file="${gen.source.dir}/com/jbossatwork/ws/InventoryEndpoint.java">

 <replacetoken><![CDATA[throws javax.ejb.EJBException,

java.rmi.RemoteException]]></replacetoken>

 <replacevalue><![CDATA[throws

java.rmi.RemoteException]]></replacevalue>

 </replace>

 <!-- Fix WS URL in jboss.xml -->

 <replace file="${gen.source.dir}/jboss.xml">

 <replacetoken><![CDATA[<ejb-name>InventoryFacade</ejb-name>]]>

</replacetoken>

 <replacevalue><![CDATA[

 <ejb-name>InventoryFacade</ejb-name>

 <port-component>

 <port-component-name>Inventory</port-component-name>

 <port-component-uri>jbossatwork-ws/InventoryService

</port-component-uri>

 </port-component>

]]></replacevalue>

 </replace>

 </target>

 <target name="run-wseedoclet" depends="run-ejbdoclet">

 <taskdef name="wseedoclet"

 classname="xdoclet.modules.wsee.WseeDocletTask"

 classpathref="xdoclet.lib.path"/>

 <wseedoclet wsdlFile="META-INF/wsdl/InventoryService.wsdl"

 jaxrpcMappingFile="META-INF/inventory-mapping.xml"

 wseeSpec="1.1"

 destdir="${gen.source.dir}"

 excludedtags="@version,@author"

 addedtags="@xdoclet-generated at ${TODAY}"

 verbose="true">

 <fileset dir="${source.dir}">

 <include name="**/*Bean.java"/>

 </fileset>

 <deploymentdescriptor name="InventoryService"/>

 </wseedoclet>

 <!-- Fix problems with XDoclet-generated webservices.xml -->

 <replace file="${gen.source.dir}/webservices.xml">

 <replacetoken><![CDATA[<wsdl-file>WEB-INF/]]></replacetoken>

 <replacevalue><![CDATA[<wsdl-file>]]></replacevalue>

 </replace>

 <replace file="${gen.source.dir}/webservices.xml">

<replacetoken><![CDATA[<jaxrpc-mapping-file>WEB-INF/]]></replacetoken>

 <replacevalue><![CDATA[<jaxrpc-mapping-file>]]></replacevalue>

 </replace>

 <replace file="${gen.source.dir}/webservices.xml">

 <replacetoken><![CDATA[<icon>]]></replacetoken>

 <replacevalue><![CDATA[]]></replacevalue>

 </replace>

 <replace file="${gen.source.dir}/webservices.xml">

 <replacetoken><![CDATA[</icon>]]></replacetoken>

 <replacevalue><![CDATA[]]></replacevalue>

 </replace>

 <replace file="${gen.source.dir}/webservices.xml">

 <replacetoken><![CDATA[Port</wsdl-port>]]></replacetoken>

 <replacevalue><![CDATA[EndpointPort</wsdl-port>]]></replacevalue>

 </replace>

 </target>

 <target name="run-wscompile" depends="compile">

 <echo message="Generating JAX-RPC Mapping and WSDL files."/>

 <path id="wscompile.task.classpath">

 <fileset dir="${jwsdp.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${java.home}/../lib" includes="tools.jar"/>

 </path>

 <taskdef name="wscompile"

 classname="com.sun.xml.rpc.tools.ant.Wscompile"

 classpathref="wscompile.task.classpath"/>

 <wscompile base="${build.dir}"

 fork="true"

 server="true"

 features="rpcliteral"

 mapping="${gen.source.dir}/inventory-mapping.xml"

 config="wscompile-config.xml"

 nonClassDir="${gen.source.dir}">

 <classpath>

 <path refid="wscompile.task.classpath"/>

 <path refid="compile.classpath"/>

 <pathelement location="${classes.dir}"/>

 </classpath>

 </wscompile>

 </target>

 ...

 <!-- Build EJB JAR. -->

 <target name="build-ejb-jar" depends="run-ejbdoclet, compile,

run-wseedoclet,

run-wscompile"

 description="Packages the EJB files into a EJB JAR file">

 <mkdir dir="${distribution.dir}" />

 <jar destfile="${distribution.dir}/${ejb.jar.name}"

 basedir="${classes.dir}">

 <metainf dir="${gen.source.dir}" includes="*.xml"/>

 <zipfileset dir="${gen.source.dir}" includes="*.wsdl"

 prefix="META-INF/wsdl"/>

 </jar>

 </target>

 ...

Even though we're adding Web Services to our EJB deployment, the overall process stays the
same. We still execute run-ejbdoclet to generate all the EJB-based deployment descriptors
and the EJB Remote and Local Component Interface files. The compile task compiles the EJBs,
and the run-wseedoclet task generates the webservices.xml file. The run-wscompile target uses
the wscompile task to create the JAX-RPC Mapping and WSDL files. Finally, build-ejb-jar
takes all the descriptors and .class files, and creates an EJB JAR file.

In the run-ejbdoclet target, we've added a new <ejbdoclet>subtask called <
service-endpoint> that generates the Service Endpoint Interface file and adds the
<service-endpoint> element to ejb-jar.xml based on the XDoclet tags we added to our EJB.
After executing <ejbdoclet>, the run-ejbdoclet target then uses the Ant <replace> task to set
the Web Services URL in jboss.xml.

The run-wseedoclet target generates the webservices.xml file from the @wsee.port-component
XDoclet tag we added to the EJB. But XDoclet doesn't generate the webservices.xml
incorrectly (it doesn't conform to the W3C specification), so we used Ant's built-in <replace>
task to fix each syntactical problem.

Since the XDoclet Ant tasks that generate the JAX-RPC Mapping and WSDL files don't work
properly, the run-wscompile target uses the wscompile Ant task from JWSDP 1.5 to generate
the JAX-RPC Mapping and WSDL files. Add the JWSDP JAR files to your CLASSPATH by doing one
of the following:

 In the Ant build script above, set the jwsdp.lib.dir property to your JWSDP 1.5
installation.

 Copy the jwsdp-shared, jaxrpc, and saaj sub-directories from your JWSDP 1.5
installation to /Library/jwsdp-1.5 (the jwsdp.lib.dir property in the Ant build script
currently points to /Library/jwsdp-1.5).

The wscompile task takes the wscompile-config.xml file in Example 10-13 (which resides in the
ejb sub-directory) as input.

Example 10-13. wscompile-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

 <service name="InventoryService"

 targetNamespace="http://localhost:8080/jbossatwork-ws"

 typeNamespace="http://localhost:8080/jbossatwork-ws/types"

 packageName="com.jbossatwork.ws">

 <interface name="com.jbossatwork.ws.InventoryEndpoint"/>

 </service>

</configuration>

The wscompile-config.xml file provides the XML Schema namespace, Java package name, and
the name of the Service Endpoint Interface Java file for each Web Service. The wscompile
task uses the contents of the wscompile-config.xml file to generate the JAX-RPC Mapping and
WSDL files.

More XDoclet Issues

You may have noticed that we're modifying the artifacts generated by the
<service-endpoint> and <wsee-doclet> XDoclet Ant tasks. We have to do this
because XDoclet 1.2.3 doesn't generate the Service Endpoint Interface and
webservices.xml files correctly. These files weren't badly broken, so we've fixed
them inline in the Ant script. Bug reports have been submitted to the XDoclet
project, and we hope to see a resolution to these issues in the next production
version of XDoclet.

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/webservices/downloads/webservicespack.html
http://java.sun.com/webservices/downloads/webservicespack.html
http://www.processtext.com/abcchm.html

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.14. J2EE Web Services Checklist
Before we move on to test the JAW Motors application's new Web Service functionality, let's
recap what we've done to implement a J2EE 1.4 Web Service:

 Created the InventoryEndpoint Service Endpoint Interface (SEI) to expose EJB methods
as Web Service operations

 Added a <service-endpoint> element to ejb-jar.xml to tell JBoss that the
InventoryFacadeBean EJB implements the InventoryEndpoint Service Endpoint Interface

 Generated the webservices.xml to register the Web Service and tie the
InventoryEndpoint Service Endpoint Interface to an implementationthe
InventoryFacadeBean

 Created the JAX-RPC Mapping File to define JAX-RPC type mappings for the parameters
and return values for the InventoryEndpoint's method

 Generated the inventory-mapping.xml WSDL file to define the Web Service and tie it to
XML Schema data types

 Set the Web Service URL by modifying jboss.xml with the Inventory Web Service URL

 Modified the InventoryFacadeBean:

o Added Web Services-related XDoclet tags

o Added the findAvailableCars() method and used an XML Schema-compatible
data type%

 Upgraded deployment by modifying the Ant build script:

o Fixed XDoclet-generated descriptors

o Modified the Web Service URL in jboss.xml

o Used JWSDP to generate the JAX-RPC and WSDL files

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.15. Testing Web Services Deployment
It's taken us a while to get here, but now that we have the core infrastructure in place to
deploy a Web Service, let's test our deployment. Here are the steps to build and deploy the
application:

 Type ant in the root directory of ch10to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory.

 Start JBoss back up.

You should see the following output in the JBoss console:

...

23:08:11,921 INFO [WSDLFilePublisher] WSDL published to: file:/C:/jboss-

4.0.2/server/default/data/wsdl/jaw.ear/ejb.jar/InventoryService.wsdl

23:08:12,182 INFO [AxisService] WSDD published to: C:\jboss-

4.0.2\server\default\data\wsdl\jaw.ear\ejb.jar\Inventory.wsdd

23:08:12,632 INFO [AxisService] Web Service deployed:

http://localhost:8080/jbossatwork-ws/InventoryService

 ...

Now point your browser to http://localhost:8080/ws4ee to see the JBossWS page as shown
in Figure 10-2.

Figure 10-2. JBossWS page

Clicking on the "View the list of deployed Web services" link takes you to the JBoss Deployed
Web Services Page, as depicted in Figure 10-3.

Figure 10-3. JBoss Deployed Web Services page

At this point, you'll see our Web Service (findAvailableCars) listed under
jaw.ear/ejb.jar#Inventory. Click on the wsdl link, and you'll see the WSDL for our Web
Service.

Now that we've successfully deployed our Web Service and viewed the WSDL, keep JBoss
running. We now move on to develop an external client that calls the findAvailableCars Web
Service.

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/ws4ee
http://localhost:8080/jbossatwork-ws/InventoryService
http://localhost:8080/ws4ee
http://www.processtext.com/abcchm.html

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.16. Web Services Client
We viewed the Web Service's WSDL, so we know that it deployed properly. However, now we
need to make sure that the Web Service really works. So, we're going to add an external
client application that tests the Web Service. Running a client against our Web Service will
flush out any Web Service-related issues like custom data type serialization/de-serialization
errors (caused by using data types that aren't compatible with XML Schema data types).

For our client, we'll use a well-known API for invoking the Inventory Web Service methods.
Here are some of our choices:

JNDI

We could add <service-ref> elements to our EJB and client deployment descriptors so
an external client could use a JNDI name like java:comp/env/service/Inventory to look
up our service endpoint and invoke its methods.

JAX-RPC

We could use JAX-RPC calls that look up the service by using its port name from the
WSDL, and then specify serializers/deserializers to handle the custom data types.

Apache Axis

We could download the WSDL from
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl and use the Apache Axis
toolkit to generate proxy and custom data type objects that communicate with the
Web Service.

Perl, Python, C#

Clients could have been written in any language that supports Web Services, but since
this is a Java book, we decided to stick with Java.

JNDI and JAX-RPC are too Java/J2EE-centric, so these approaches don't provide a good test
for the interoperability of our Web Service. Besides, the main reason for using Web Services is
to enable clients to seamlessly use a service, regardless of the programming language used on
either side. We chose Axis because:

 Axis code generation is based on WSDL, making it platform-neutral.

 The generated proxy and custom data type objects make it much easier to write the
client.

Our client is written in Java, but non-Java clients written in other languages like C# could also
take our WSDL, generate a proxy using their own language-specific tools, and use our Web
Service. WSDL completely decouples a Web Service from its clients because:

 Each client generates a proxy and any associated custom data types from the WSDL
into its native language.

 There are no language- or platform-specific dependencies between a Web Service and
its clients.

Before we develop a Web Service client, let's explore the new directory structure we'll use for
our Web Service client development environment.

10.16.1. Exploring the New Directory Structure

In previous chapters, we had subdirectories for building the Common JAR (common), the
database (sql), the web application (webapp), and EJBs (ejb).

If you change to the ch10 directory, you'll see that we've added a client sub-directorythis is
our Web Service client development environment. The goal is to keep each portion of the
application as autonomous as possible. By providing individual Ant scripts, we have the
opportunity to build each portion of the project separately.

10.16.1.1. The client sub-project

Take a moment to explore the client sub-project. There is a single class in itMyAxisClient.
Notice that we've created a new package structure for our client codecom.jbossatwork.client.

The Ant build script in the client sub-directory generates Web Service proxy code, compiles
the MyAxisClient class, and invokes the MyAxisClient's main() method to run the client. Don't
run the Ant script just yetwe'll show how the Web Service client build works in the next
section. The main build.xml script in the ch10 directory doesn't require any changes because
the Web Service and the client are two separate builds.

Now that we've shown the Web Service client development environment, let's implement the
client.

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://www.processtext.com/abcchm.html

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.17. Implementing a Web Service Client
To implement a Web Service Client, we need to do the following:

 Download the WSDL from http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
.

 Generate Web Service proxy and custom data type objects by using the Axis
WSDL2Java Ant task.

 Write a Web Service client that uses the Axis-generated proxy and custom data type
objects to call the Web Service.

After downloading the WSDL and saving it to client/InventoryService.wsdl under the ch10
project root directory, we use the Axis 1.1 WSDL2Java Ant task in the client build.xml file to
generate our Web Service proxy objects and custom data types (Example 10-14).

Example 10-14. client/build.xml

 ...

 <property name="axis.lib.dir" value="/Library/axis-1_1/lib"/>

 ...

 <path id="axis.classpath">

 <fileset dir="${axis.lib.dir}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

 ...

 <target name="run-wsdl2java" description="Generates WS proxy code from

WSDL">

 <path id="wsdl2java.task.classpath">

 <path refid="axis.classpath"/>

 </path>

 <taskdef name="wsdl2java"

 classname="org.apache.axis.tools.ant.wsdl.Wsdl2javaAntTask">

 <classpath refid="wsdl2java.task.classpath"/>

 </taskdef>

 <mkdir dir="${gen.source.dir}" />

 <wsdl2java output="${gen.source.dir}"

 url="InventoryService.wsdl"

 verbose="true">

 <mapping namespace="http://localhost:8080/jbossatwork-ws"

 package="com.jbossatwork.client"/>

 <mapping namespace="http://localhost:8080/jbossatwork-ws/types"

 package="com.jbossatwork.client"/>

 </wsdl2java>

 </target>

The <run-wsdl2java> target uses the Axis <wsdl2java> task to generate the Web Service proxy
objects (InventoryServiceLocator, InventoryService, and InventoryEndpoint) and custom data
types (CarDTOArray and CarDTO) for the client. The <mapping>elements map the namespace
from the WSDL to our Java package namecom.jbossatwork.client. The namespace for each
<mapping> element comes from the WSDL:

 http://localhost:8080/jbossatwork-ws is the WSDL namespace for the proxy objects.

 http://localhost:8080/jbossatwork-ws/types is the WSDL namespace for the custom
data type objects.

The <mapping>elements coerce <wsdl2java> to generate the proxy and custom data type
objects with a reasonable Java package name.

Download Axis 1.1 from http://ws.apache.org/mirrors.cgi, and add the Axis JAR files to your
CLASSPATH by doing one of the following:

 In the Ant build script above, set the axis.lib.dir property to your Axis 1.1
installation.

 Copy the libsub-directory from your Axis 1.1 installation to /Library/axis-1_1/ (the
axis.lib.dir property in the Ant build script currently points to /Library/axis-1_1/lib
).

After generating the Web Service proxy and custom data type objects, we then compile and
use them in our client, as Example 10-15 demonstrates.

Example 10-15. MyAxisClient.java

package com.jbossatwork.client;

public class MyAxisClient {

 public static void main(String [] args) {

 try {

 System.out.println("Finding InventoryService ...\n");

 InventoryService service = new InventoryServiceLocator();

 System.out.println("Getting InventoryEndpoint ...\n");

 InventoryEndpoint endpoint = service.getInventoryEndpointPort();

 System.out.println("Getting Cars ...");

 CarDTOArray carDTOArray = endpoint.findAvailableCars();

 CarDTO[] cars = carDTOArray.getCars();

 for (int i = 0; i < cars.length; ++i) {

 System.out.println("Year = [" + cars[i].getModelYear() +

 "], Make = [" + cars[i].getMake() +

 "], Model = [" + cars[i].getModel() + "], status =

[" +

 cars[i].getStatus() + "]");

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Axis does all the heavy lifting for us by encapsulating the low-level Web Service calls and
custom data type serialization/deserialization. The proxy and custom data type objects
generated by Axis are easy to use, so Web Service invocation looks just like calling a POJO.
The Axis-generated code is elegant and looks natural to anyone accustomed to OO
programming languages. The InventoryServiceLocator() constructor returns an
InventoryService object that enables us to obtain an InventoryEndpoint, a remote handle for
accessing the service. We then use the InventoryEndpoint object to access JAW Motors' car
inventory by invoking our findAvailableCars() Web Service operation that returns a
CarDTOArray. The CarDTOArray contains an array of CarDTO objects, so we call the
CarDTOArray.getCars() method to extract the array of CarDTO objects. We finish by printing
the contents of each CarDTO element in the array.

Hey! My Web Service Client Doesn't Work with Java 5!

Time and technology didn't stand still for us while we were writing this book. We
tested our examples with J2SE 1.4, but some things have changed with Java 5
(also known as J2SE 5.0) and Axis. First, Java 5 is incompatible with Axis 1.1 (it
doesn't understand enums), so you'll need to upgrade to Axis 1.2 or higher.
Second, the <wsdl2java> task under Axis 1.2 works a bit differentlyit now
optimizes away the CarDTOArray. The generated
InventoryEndpoint'sfindAvailableCars() method now returns an array of CarDTO
objectsCarDTO[]. Here are the relevant changes to MyAxisClient:

public class MyAxisClient {

 public static void main(String [] args) {

 try {

 ...

 CarDTO[] cars = endpoint.findAvailableCars();

 ...

 } catch (...) {

 }

 }

}

We've left comments in the client/build.xml and MyAxisClient.java files to help
you upgrade to Java 5. Please note that the server side remains the samethe
InventoryFacadeBean's findAvailableCars() method still returns a CarDTOArray for
serializing the CarDTO array.

We've tested these changes, and they work properly with Java 5 and Axis 1.2.1
(available at http://www.apache.org/dyn/closer.cgi/ws/axis/1_2_1).

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://localhost:8080/jbossatwork-ws
http://localhost:8080/jbossatwork-ws/types
http://ws.apache.org/mirrors.cgi
http://www.apache.org/dyn/closer.cgi/ws/axis/1_2_1
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://localhost:8080/jbossatwork-ws
http://localhost:8080/jbossatwork-ws/types
http://ws.apache.org/mirrors.cgi
http://www.apache.org/dyn/closer.cgi/ws/axis/1_2_1
http://www.processtext.com/abcchm.html

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.18. Web Service Client Checklist
Before we move on to test the Web Service Client, let's recap what we've done:

 Downloaded the Web Service's WSDL from
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl

 Generated Web Service Web Service proxy and custom data type objects by using the
Axis WSDL2Java Ant task

 Wrote a Web Service client that uses the Axis-generated proxy and custom data type
objects to call the Web Service.

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://www.processtext.com/abcchm.html
http://localhost:8080/jbossatwork-ws/InventoryService?wsdl
http://www.processtext.com/abcchm.html

10.19. Testing the Web Service Client
We've generated Web Service proxy code and written a client to call the findAvailableCars
Web Service. Go to the ch10/client sub-directory, and compile and run the client by typing:
ant run-client.

Ant runs the client (by MyAxisClient's main() method) after generating and compiling the
client code. You should see the following output in the client console:

...

 [java] Finding InventoryService ...

 [java] Getting InventoryEndpoint ...

 [java] Getting Cars ...

 [java] Year = [2005], Make = [Toyota], Model = [Camry], status =

[Available]

 [java] Year = [1999], Make = [Toyota], Model = [Corolla], status =

[Available]

 [java] Year = [2005], Make = [Ford], Model = [Explorer], status =

[Available]

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.20. Final Thoughts on J2EE 1.4 Web Services
Here are the lessons we learned from deploying a J2EE 1.4 Web Service:

 Adding Web Services to your application doesn't have a huge impact on your
server-side code, but it increases the complexity of your deployment.

 If you already have a Stateless Session Bean, you only have to modify and add some
XDoclet tags to expose its methods as Web Services.

 Make sure that the Java classes you're using as parameters and return values follow
the Java Beans conventions.

 Java 2 Collections and arrays of custom data types are incompatible with Web
Services, so wrap an array of custom data types in a Java Bean.

 If your Web Service uses custom data types as parameters or return values, make sure
you use JBoss 4.0.1sp1 or higher.

 Set your Web Service URL to something meaningful in jboss.xml.

 The tools that generate Web Services server-side deployment artifacts are still
maturing.

 XDoclet 1.2.3 has limited support for Web Services. Use XDoclet to:

o Generate the <service-endpoint> element in ejb-jar.xml.

o Create webservice.xml.

o Generate the Service Endpoint Interface.%

 Due to XDoclet's limitations, use JWSDP's wscompile tool to generate the JAX-RPC
Mapping and WSDL files.

 Check your Web Service deployment by viewing the JBossWS Page (
http://localhost:8080/ws4ee) on your JBoss instance.

 On the client side, use the WSDL to generate proxy and custom data type objects in
your native programming language to communicate with a Web Service. Using
WSDL-based client code tests the interoperability of your Web Service.

 Even if you're using Java, using the Axis toolkit to invoke a Web Service gives you a
simple, elegant Object Oriented interface that hides the low-level API calls.

 If you're using Java 5, make sure you use Axis 1.2 or higher.

 If you're using J2SE 1.4, use Axis 1.1.

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/ws4ee
http://localhost:8080/ws4ee
http://www.processtext.com/abcchm.html

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.21. Conclusion
In this chapter we showed how to expose a portion of the JAW Motors application as a Web
Service so JAW Motors can share its inventory with its online trading partners and work with
non-Java clients. We exposed an EJB as a Web Service by using Ant, XDoclet, and JWSDP to
deploy it on JBoss. We finished by writing an Axis client that invoked our Web Service.

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.22. Congratulations!
Congratulationsyou did it! You started off this book by deploying an EAR and serving up simple
content with hardcoded data for demonstration purposes. Then you progressed to using a
JDBC connection to get data from JBoss' built-in HyperSonic database. You wired up the
database using Hibernate to make the database access easier, more platform-independent,
and to more easily automate the application. You added Session Beans to the application to
manage transactions. Then you used JMS to send a message to a Credit Card approval system
and sent an email with JavaMail to indicate the success or failure of the credit check. You
then added security to the application to prevent unauthorized access to certain portions of
the application. You finished by exposing a portion of the application as a Web Service so JAW
Motors could share its inventory with its online trading partners. We hope that you can take
what you've learned in this book and apply it to your real-world JBoss projects.

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Appendix A. ClassLoaders and JBoss
When a Java application references Java classes, the Java Virtual Machine (JVM) uses a
ClassLoader to load them into memory. The Delegation Model was introduced in Java 2 and
organizes ClassLoaders into the following tree/hierarchy by using parent/child relationships, as
shown in Figure A-1.

Figure A-1. Standard J2SE ClassLoader hierarchy

The J2SE ClassLoaders do the following:

 The Bootstrap (also called the primordial) ClassLoader has no parent, is the root of the
ClassLoader tree, and loads core Java classes (java.*) into the JVM.

 The Extension ClassLoader loads extension classes:

o Classes that extend core Java classesjavax.*.

o Classes from the Java Runtime Environment (JRE) lib/ext directory in the
standard J2SE installation.

 The System (also called the Application) ClassLoader loads classes and JARs from the
system CLASSPATHthe CLASSPATH environment variable and the classpath argument on
the java command line.

If the current ClassLoader previously loaded a class, then the ClassLoader returns the class to
the client. If a class has not been previously loaded, then according to the Java specification,
a ClassLoader must defer (or delegate) to its parent before trying to load the class itself. For
example, if an application references java.lang.String, the System ClassLoader delegates to
the Extension ClassLoader, which in turn defers to the Bootstrap ClassLoader to load the
String class. The child ClassLoader gets a chance to load a class only if the parent hasn't
already loaded the class or couldn't load the class. A class is loaded only once per
ClassLoader.

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

A.1. Namespaces
The JVM recognizes a class by its runtime identitythe class' full name (the package plus class
name), along with the instance of the ClassLoader that instantiated the class. Each
ClassLoader has its own namespace consisting of the classes it loads, and each fully qualified
class name MUST be unique within that namespace. This naming convention is required by the
J2EE specification. Two ClassLoaders could each load the same class, and the JVM would
treat each class as a distinct type. Thus the JVM considers class
com.jbossatwork.util.TextEmail in ClassLoader 1 different from the
com.jbossatwork.util.TextEmail in ClassLoader 2 because they have different runtime
identities based on the ClassLoader name. We'll see why this distinction is important when we
get to the section on the JBoss ClassLoaders.

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.2. Class Loading in the J2EE
Class Loading is one of the least understood aspects of J2EE deployment. Although not
officially part of the J2EE specification, most application servers use a strategy similar to the
ClassLoader hierarchy in Figure A-2 to support J2EE component deployment.

The J2EE-based ClassLoaders work as follows:

 The EAR ClassLoader loads the classes from JARs contained in the EAR file.

 The EJB ClassLoader loads EJBs and related classes that reside in the EJB JAR file.

 The WAR ClassLoader loads the web-specific classes and JARs in the WAR file's
WEB-INF/{class,lib} directories.

Because each ClassLoader has no access to the classes loaded by its children or siblings, the
classes in the WAR file are not visible to EJBs. Of course EJBs shouldn't try to reference things
in the WAR in the first place because it is poor architecture. Each layer should not know about
the invoking layer, and you can't assume that a web-based presentation layer will always be
in your application.

Figure A-2. Generic J2EE Application Server Class Loader Hierarchy

The J2EE specification is vague concerning the deployment order of the J2EE modules. Many
application servers deploy the JARs and classes in the EAR, and then the classes in the EJB
JAR, and finally, the classes and JARs in the WAR. In the JAW Motors application, the Common
JAR strategy works because the EAR contains the Common JAR, so the application-specific
dependency classes and the third party utility JARs get deployed first, then the EJBs in the
EJB JAR are loaded, and the web components from the WARwhich depend on the EJBs and
common classes and JARsdeploy last.

Here is a practical example that uses the class-loading scenario from Figure A-3. In the JAW
Motors application, a JSP invokes a Servlet, which in turn uses an EJB; both the Servlet and
the EJB use Log4J. Since the JSP and Servlet are packaged in the WAR, the WAR ClassLoader
finds and loads the JSP and Servlet. When the Servlet instantiates the EJB, the WAR
ClassLoader cannot find the EJB, so WAR ClassLoader defers to its parentthe EJB ClassLoader.
The EJB JAR contains the EJB, so the EJB ClassLoader finds and loads the EJB on behalf of the
WAR ClassLoader. When the Servlet instantiates the Log4J Logger to log messages, neither
the WAR ClassLoader nor the EJB ClassLoader can find the Log4J JAR, so they delegate to
their parent, the EAR ClassLoader. Since The Common JAR contains the Log4J JAR, the EAR
ClassLoader finds and loads the Log4J Logger on behalf of the child ClassLoaders.

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.3. Class Loading with JBoss
JBoss ' class loading scheme is similar to the strategy used by other J2EE application servers,
as shown in Figure A-3.

Figure A-3. JBoss ClassLoader Hierarchy

JBoss' ClassLoader hierarchy differs from the strategy used by other J2EE application servers
in the following ways:

The ClassLoader Repository

The ClassLoader Repository contains all classes loaded by a JBoss instance, including:

 JBoss' internal boot classes, including its J2EE component implementations

 Any classes or JARs specified on the command line when starting JBoss

 All classes or JARs from each deployed application

By default, only one ClassLoader Repository covers the entire server. But you are free
to declare any number of repositories and associate any deployed applications with a
repository. To keep deployment simple, the JAW Motors application uses the default
ClassLoader Repository.

Cross-referencing between EJB JAR and WAR files

Within an EAR, an EJB could access classes and/or properties packaged in a WAR file
(Log4J for example). The converse is true as wellweb components could access
resources bundled in an EJB JAR. However, we do not recommend this practice
because it ties you to JBossyour application will not deploy on other application
servers.

Loading classes

The WAR, EJB JAR, and EAR ClassLoaders do NOT load any classes. When an
application loads its classes, each ClassLoader adds its contextual information (classes,
property files, and JARs) to the ClassLoader context and defers to its parent. Finally,
control passes to the JBoss Application ClassLoader, which loads the class from the
ClassLoader Repository.

We still recommend using a Common JAR (that resides in the EAR), which contains all JARs and
classes common to both an application's EJB JAR and WAR, because:

 Some form of packaging JARs in an EAR file works with most J2EE application servers.

 It enables you to share classes between applications. For example, if EAR 1 and EAR 2
both use com.jbossatwork.util.TextEmail.class, you could factor it out of both
applications into a separate deployment. Then you would be free to cycle the EAR files
independently and never have to worry about ClassCastExceptions when you hot
deploy one of the applications.

Page 305

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

A.4. Common ClassLoader Issues
ClassLoader issues are difficult to find and take a long time to debug. They fall into one of two
categories:

Not enough visibility

You'll see one of the following exceptions:

 ClassNotFoundException

Java API methods such as Class.forName() or ClassLoader.loadClass() throw a
ClassNotFoundException. This exception happens when a class loader tries to load a
class and can't find the class. Here are some possible causes:

 A JAR or directory for the class is not available, so the ClassLoader asked to
load the class, or to its parent(s).

 The wrong ClassLoader is used to load the class.

NoClassDefFoundError

A NoClassDefFoundError has the same causes as the ClassNotFoundException, but there
is an additional reasona class depends on other classes that are inaccessible from the
current ClassLoader. The other classes may reside only in a child or sibling ClassLoader,
neither of which is available to the current ClassLoader.

Too much visibility

This happens when you have a duplicate class and the problem manifests as a
ClassCastException. For example, you could include the same JAR file (bundled with
several libraries) more than once in your deployment.

Page 307

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

A.5. ClassLoader Options
In the Java API, you can explicitly use either the System (or Application), Current, or the
Thread Context ClassLoader.

You can access the System ClassLoader by calling ClassLoader.getSystemClassLoader(). In
most J2EE application servers, the System ClassLoader is too high in the hierarchy and will not
find the resources packaged in your application's EJB JAR or WAR. In JBoss, using the System
ClassLoader is still a problem because the ClassLoader Repository holds references to all
deployed applications, so you could easily have a naming conflict if more than one application
uses the same class.

The Current ClassLoader is the ClassLoader that loaded the class that contains the method
that's currently executing. Class.getResource() and the one-parameter version of
Class.forName() use the Current ClassLoader by default. The Current ClassLoader is a better
choice than the System ClassLoader, but there are still problems with using the Current
ClassLoader:

 You may not know who calls your class, and the current ClassLoader could be up too
high in the ClassLoader to find the resources that your class needs.

 In JBoss, you could have the same naming conflict with Class Loader Repository that
you had with the System ClassLoader.

You gain access to the current Thread Context ClassLoader by calling Thread.currentThread(
).getContextClassLoader(). The Thread Context ClassLoader is the ClassLoader used by the
creator of the Thread that runs your code. The Thread Context ClassLoader works in a way
that's contrary to the Delegation Model by enabling a parent ClassLoader to access classes
from any of its child ClassLoaders. Sometimes a parent ClassLoader needs to see classes that
one of its child ClassLoaders instantiates at runtime. Use the Thread Context Class Loader for
the following reasons:

 In JBoss, you're guaranteed to load the class or property file from your application by
using the Thread Context ClassLoader. Even though the JBoss ClassLoader Repository
may have the same class or property from several applications, the Thread Context
ClassLoader picks the class or property that belongs to your application.

 The EJB specification forbids EJBs to use the Current Class Loader, and since the
System Class Loader isn't a workable option, you're left with the Thread Context
ClassLoader. See the Programming Restrictions section in the EJB specification for
further details.

Here are a couple of practical uses of the Thread Context ClassLoader:

 If you have a factory method that uses Class.forName() to instantiate classes
dynamically, pass the Thread Context ClassLoader as a parameter to Class.forName().

 To load a Properties file in your application's CLASSPATH, call Thread.currentThread(
).getContextClassLoader().getResourceAsStream() to find the Properties file, and use
the resulting InputStream when calling Properties.load().

Page 308

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 309

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

A.6. Solving ClassLoader Issues
The best way to solve ClassLoader issues is to reduce their likelihood by following good
deployment practices:

 Know the basics of ClassLoaders and how your particular deployment environment uses
them. Even though it sounds boring, make a deployment plan and stick with it. Know
the dependencies for each J2EE module. Then factor out the common classes and
utility JARs into a Common JAR that resides in the EAR. When you add new dependency
classes or third party utility JARs, update the plan and refactor. Planning where your
classes and utilities reside reduces the chance that you'll have ClassNotFoundException
and NoClassDefFoundError issues.

 Make sure that there are no duplicate classes or JAR files. Third party libraries typically
cause this problem because they each may have their own copy of a particular JAR
file. For example, many Apache libraries have their own copy of files such as Log4J and
Commons Lang. Make sure there is only one copy of these classes or JAR files across
the entire EAR deployment. This process is tedious and requires upgrading Ant build
scripts, but it saves serious headaches later on. Without duplicate classes or JARs,
you're less likely to see problems like the ClassCastException.

 Encapsulate/Minimize Visibility to avoid ClassCastExceptions.

o Put web-specific classes in the WAR file's WEB-INF/classes directory and
web-specific third party JARs (like Struts, for example) in the WAR file's
WEB-INF/lib directory. There's no need to put web-specific classes and JARs in
the Common JAR because other J2EE modules don't depend on them.

o Put extra EJB-specific utility classes and dependent JAR files in EJB JAR's root
directory because the web components don't need to access them.

o Use a Common JAR that contains all utility classes and JARs used in both the
EJB JAR and the WAR.

 Use the correct ClassLoader to avoid the ClassNotFoundException and
NoClassDefFoundError. Use the Thread Context ClassLoader (Thread.currentThread(
).getContextClassLoader()). If you use Class.forName(), pass in the Thread Context
ClassLoader as a parameter. To load a Properties file in your application's CLASSPATH,
use the Thread Context ClassLoader to get an InputStream for loading the Properties
file.

Page 310

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 311

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A.7. Conclusion
In this Appendix, we covered J2SE and J2EE ClassLoaders. We then showed how Class Loading
works in JBoss, and finished by discussing how to reduce the probability of ClassLoader
problems in your applications.

Page 312

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Appendix B. Logging and JBoss
Most J2EE applications use some form of logging or tracing API that stores messages to a
persistent medium (such as DBMS or file). Logging provides the following benefits:

Debugging

Developers generate log messages to debug their programs.

Reviewing

System personnel examine log messages to check for problems.

Auditing

Security personnel can review log messages to see what actions a user performed in
the system.

This chapter covers two of the most common logging APIs and how to use them with JBoss:

 Jakarta Commons Logging (JCL) API

 Apache Log4J

Page 313

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 314

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.1. Jakarta Commons Logging (JCL) API
The Jakarta Commons Logging (JCL) package from the Apache Jakarta project provides a
standard interface to the various logging libraries, hiding the details of the logging
implementation from an application. Many logging APIs are available, and at some point an
application may need to change to another logging technology. The main benefit of the JCL is
that it enables developers to switch between logging implementations without impacting their
code.

B.1.1. Using the Apache JCL

Example B-1 is an example from the JAW Motors InitServlet that uses the JCL to print out a
log message.

Example B-1. InitServlet.java

...

import org.apache.commons.logging.*;

...

public class InitServlet extends GenericServlet {

 private Log log = LogFactory.getLog(InitServlet.class);

 private ServletContext servletContext;

 public void init() {

 ...

 log.info("Testing Logging Setup ...");

 }

}

The call to LogFactory.getLog() creates a concrete implementation of the
org.apache.commons.logging.Log interface so we can log messages. The init() method then
uses the Log instance to log a debug message by calling log.debug()this method then does
the real work of logging the message to its destination. See the next section for more
information about org.apache.commons.logging.Log interface. See the Initialization Servlet
section for more information on the InitServlet.

B.1.2. Using a Logging Implementation

A logging package must implement the Log interface to work with the JCL, which comes
bundled with four usable concrete logger instances that encapsulate the underlying logging
package:

Log4JLogger

Delegates to a Log4J Logger

Jdk14Logger

Wraps the standard logger that comes with the J2SE

LogKitLogger

Encapsulates the Avalon logkit logger

SimpleLogger

The default logger that dumps all messages to System.err

Several options logging implementations are available, but we chose Log4J for the JAW Motors
application because of Log4J's widespread use and robust features. Each logger implements
the JCL's Log interface so the caller doesn't know about the logger that JCL uses. The JCL
uses the following algorithm to determine which logger to use:

If the org.apache.commons.logging.Log property was set, THEN

 Instantiate the logger defined by the org.apache.commons.logging.Log

property.

ELSE IF Log4J is available (on the CLASSPATH) THEN

 Use Log4JLogger.

ELSE IF JDK 1.4 or later is available THEN

 Use Jdk14Logger.

ELSE

 Use SimpleLogger.

B.1.3. Property File

The Commons Logging package uses a property file, commons-logging.properties (which
resides in the appb project's common/conf sub-directory), to configure and instantiate the
underlying logging mechanism to use. The JAW Motors application places this properties file in
the base directory of its Common JAR file so that Apache Commons Logging can find the file
on the CLASSPATH and configure itself properly (for more details see the "Logging Deployment"
section). In Example B-2, Log4J is the logging implementation.

Example B-2. commons-logging.properties

org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

B.1.4. Logging Levels

Logging levels have no intrinsic universally accepted meaning. On each project, system
personnel and developers need to determine what logging levels are meaningful and how to
use to them. JCL's Log interface has six logging levels (in ascending order). Here's how we use
them in the JAW Motors application:

trace

This is the least serious/lowest level, and we don't see a need for trace because we
use debug instead.

debug

We use debug when we're debugging an application or to leave some bread crumbs
when running an application. These messages are typically sent to a log file.

info

The JCL development group recommends using info messages to log events that occur
at system startup or shutdown.

warn

This level represents minor errors. We feel that it is a bit too fine-grained, so we use
the error logging level instead.

error

This represents runtime failures in the application due to system failures or
programming errors. The most common problems we've seen include: JNDI lookup
failure, database is inaccessible, and NullPointerException. You usually want to log the
error and notify system personnel with an email or pager message.

fatal

This is the most serious/highest level, and it represents errors that cause an
application to terminate abnormally. On our projects, we haven't seen any of these
kinds of problems in the code. We've seen exceptions that terminate the deployment
process show up in the JBoss console. So, we don't use fatal messages in the JAW
Motors application.

Of course, if you want to apply different meanings and actions to these logging levels, do
what works for your application. Although each logging API manages its logging levels in an
implementation-specific manner, each logging system must work in an expected way. For
example. if the debug level logging is enabled, the logging package logs debug and higher level
messages, and ignores trace level messages.

Page 315

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 316

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 317

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.2. Apache Log4J
Apache Log4J, a powerful logging framework, is the de-facto standard in the Java Open
Source community. Recently promoted from the Jakarta project, Log4J has done so well that it
has been ported to C, C++, Perl, PHP, Python, .NET, and Ruby. Log4J provides the following
features:

Configurable Destinations

Log4J logs messages to different output destinations, including files, JMS, and a DBMS.

Log Levels

Log4J has logging levels that enable you to configure which messages are logged to
the output destination. For example, if debug-level logging is enabled, Log4J logs debug
and higher level messages, and ignores trace-level messages.

Powerful Formatting

The formatting classes enable developers to specify the look and feel of logging
messages.

Because a thorough discussion of Log4J is outside the scope of this book, please see the
References section for complete documentation.

B.2.1. Log4J Core Concepts

Log4J's key classes and interfaces include:

Logger

Log4J's main class. Logger logs messages to an Appender based on the message's
logging level.

Appender

An Appender sends logging messages to a particular destination. Here are some of the
Appender interface's concrete implementations:

JDBCAppender

Stores logging messages in a database table.

FileAppender

Writes logging messages to a file.

DailyRollingFileAppender

Writes logging messages to a file that is rolled over at a user-defined interval. Most
people let the log file roll over every 24 hours so you have a separate log file for each
day.

JMSAppender

Publishes logging messages to a JMS Topic.

SMTPAppender

Sends an email message that contains a logging message.

Layout

An Appender uses a Layout to format a logging message. Here are some of the Layout
interface's concrete implementations:

SimpleLayout

Creates log messages that consist of the log level followed by a dash, and then the
message itself. For example:

FATALSomething went terribly wrong.

HTMLLayout

Outputs log messages into an HTML table.

PatternLayout

Formats log messages based on a conversion pattern.

B.2.2. PatternLayout

PatternLayout is the most common way to format messages, so that's what we use for the
JAW Motors application. Table B-1 shows some of the most common conversion patterns.

Table B-1. Log4J PatternLayout

Pattern Meaning

%c Category of the log message.

%C Fully qualified class name of the caller (caution: extremely slow).

%d
Date of the log message. This uses the default ISO 8601 format
(YYYY-mm-dd HH:mm:ss,SSS) if none is specified.

%F File name from where the logging request was issued (caution:
extremely slow).

%L Line number from where the logging request was issued (caution:
extremely slow).

%m The message text.

%M Method name from where the logging request was issued
(caution: extremely slow).

%n Line separatorthis is Operating System neutral.

%p Log level (priority) of the log message.

%% A single percent sign.

The JAW Motors application uses the following conversion pattern to output messages to a log
file:

%d %-5p [%c] - %m%n

Here is a sample message from the log file:

2005-06-06 17:24:02,923 INFO [com.jbossatwork.InitServlet] - Testing Logging

Setup

...

This message consists of: the date/time (%d), the logging level (%-5p), the category ([%c]) of
the message (this is configured as the class name), a dash, the message text (%m), and the
line separator (%n). Example B-3 shows the call from the InitServlet (see the Initialization
Servlet section) that generated the message.

Example B-3. InitServlet.java

log.info("Testing Logging Setup ...");

B.2.3. Log4J Configuration File

Log4J configures the Appender (destination) and Layout (format) for Log4J messages in an
external file. Originally, Log4J used a Java properties file (log4j.properties), but now the
preferred way is to use an XML configuration file , log4j.xml. The JAW Motors application
uses log4j.xml file because:

 Non-Java applications can work with XML files.

 Most people prefer the XML configuration file rather than the properties file.

There are two options for configuring Log4J with JBoss:

 Modify JBoss' log4j.xml file (located in the conf directory within the JBoss server
configurationfor the JAW Motors application, this is in $JBOSS_HOME/server/default/conf
).

 Create an application-specific log4j.xml.

Modifying JBoss' log4j.xml file is undesirable for the following reasons:

 You don't want to co-mingle your application-specific log messages with JBoss' log
messages because your messages will be harder to find.

 The JBoss log4j.xml file contains JBoss-specific Log4J setup details that you don't care
about.

 You have to make the same changes for your application to the JBoss log4j.xml file
every time you upgrade JBoss.

 You could copy the JBoss log4j.xml to your project directories, modify it with your
application setup, and then include this file as part of application deployment.
However, you still need to change your local version of log4j.xml whenever you
upgrade JBoss.

 Using the JBoss log4j.xml file ties an application to JBoss.

The JAW Motors application uses its own Log4J XML configuration file, jbossatwork-log4j.xml,
to keep its configuration and log messages separate from JBoss. We named our file
jbossatwork-log4j.xml rather than log4j.xml because:

 We use a ClassLoader to locate the file.

 We don't know if the configuration file comes before or after JBoss' log4j.xml file on
the CLASSPATH, so we don't know which file (ours or JBoss') the ClassLoader will use.

 Using a different file name guarantees that the ClassLoader loads our Log4J XML
configuration file.

Example B-4 shows the Log4J XML configuration file for the JAW Motors application.

Example B-4. jbossatwork-log4j.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/"

debug="true" >

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <param name="Target" value="System.out"/>

 <param name="Threshold" value="INFO"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%c] - %m%n"/>

 </layout>

 </appender>

 <appender name="ROLLING"

class="org.apache.log4j.DailyRollingFileAppender">

 <param name="File" value="${log4j.log.dir}/jbossatwork.log"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%c] - %m%n"/>

 </layout>

 </appender>

 <category name="com.jbossatwork">

 <priority value="DEBUG"/>

 <appender-ref ref="ROLLING"/>

 </category>

 <category name="org.apache">

 <priority value="WARN"/>

 </category>

 <root>

 <priority value="WARN"/>

 <appender-ref ref="STDOUT"/>

 </root>

</log4j:configuration>

The above jbossatwork-log4j.xml file defines two Appenders:

 The DailyRollingFileAppender logs messages using the specified format to a file
defined as ${log4j.log.dir}/jbossatwork.log. We use a property because we don't
want to hardcode the log file's directory path. At midnight, Log4J closes the previous
day's log file (tagging it with the date) and creates a new one for the next day. The
property log4j.log.dir is a System property that specifies the directory where the log
file resides. Log4J looks in System Properties to find the value for any properties
mentioned in a Log4J XML configuration file. The log4j.log.dir property can be set in
one of two ways:

o By passing in the value of the log4j.log.dir property as a -D option on the
Java command line in the JBoss startup script (run.bat or run.sh). You can pass
in the value by adding the following code to the JAVA_OPTS environment variable
(the script uses JAVA_OPTS to build the Java command line):

o

o Dlog4j.log.dir=C:\rev2\logs

o But this has the same drawbacks (see above) as the JBoss log4j.xml.

o By putting the log4j.log.dir property in a property file and including it in the
application's CLASSPATH. The JAW Motors application specifies log4j.log.dir in a
property file, log4j.extra.properties (which resides in common/conf). This
properties file is deployed in a Common JAR that resides in an EAR file. The
Initialization Servlet (see the Initialization Servlet section) then adds the
log4j.log.dir property to System Properties at runtime before initializing Log4J.
This type of deployment removes the tight coupling between the application
and JBoss.

 ConsoleAppender logs messages by using the specified format to System.out (the default
setting).

The log4j.extra.properties file is an application-specific properties file that holds extra
properties to configure Log4J. The log4j.extra.properties file resides in the appb project's
common/conf subdirectory and looks like Example B-5.

Example B-5. log4j.extra.properties

log4j.log.dir=C:/rev2/logs

The log4j.log.dir property represents the directory where the JAW Motors application's log
file resides. You'll want to set the log4j.log.dir property to a valid path on your filesystemif
you don't do this, Log4J will not log your messages. This log directory MUST exist before
starting JBoss or Log4J can not create the logfile. However, you don't have to create the
directory because appb Ant build script does it for you. The log4j.log.dir property's key and
value must be added to System Properties so Log4J can configure itself properly by using
jbossatwork-log4j.xml (which uses log4j.log.dir as a System Property to configure its File
Appender).

A Category logs messages to one or more Appenders. The JAW Motors application's
jbossatwork-log4j.xml file (which resides in the appb project's common/conf sub-directory)
defines three Categories:

com.jbossatwork

By using com.jbossatwork (the JAW Motors application's root package name) as the
category name, Log4J sends all messages from the JAW Motors application's classes to
the "ROLLING" appendera DailyRollingAppender that uses the jbossatwork.log file (in the
directory specified by log4j.log.dir) as its output destination. For the com.jbossatwork
category, Log4J logs only messages with a logging level of INFO or higher.

org.apache

By using org.apache (the Apache Project's root package name) as the category name,
Log4J sends all messages from the Apache Project's classes to the Root Category. In
this case, Log4J logs only messages with a logging level of WARN or higher.

root

The Root Category has no name and is the default for messages that don't match any
other Category. For the Root Category, Log4J logs only messages with a logging level
of WARN or higher to the "STDOUT" appenderthis is a ConsoleAppender that uses Standard
Output (the terminal) as its output destination.

B.2.4. Log4J Initialization

You can initialize Log4J with JBoss in several ways:

 Several options include setting the log4j.configuration system property with the -D
option on the Java command line in the JBoss startup script (run.bat or run.sh) by
adding the following to the JAVA_OPTS environment variable (the script uses JAVA_OPTS
to build the Java command line):

 -Dlog4j.configuration=jbossatwork-log4j.xml

 Use the CLASSPATH. In this case, you put the Log4J configuration file on the application
CLASSPATH and access the file with a ClassLoader at application startup.

Using the -D mechanism is unacceptable because it forces you to modify the JBoss startup
script (JBOSS_HOME/bin/run.bat or run.sh)see the Log4J Configuration File section for a full
discussion on the problems with modifying JBoss files. Getting a resource on the CLASSPATH
with a ClassLoader is a better option because it separates an application's deployment
(EAR/WAR/EJB JAR) from the application server.

B.2.5. Initialization Servlet

JBoss loadsinstantiates the Servlet and invokes init()the InitServlet at startup before
invoking any other Servlet or other J2EE component. The InitiServlet extends
javax.servlet.GenericServlet because it doesn't respond to HTTP requestsits only purpose is
to set up the JAW Motors application. Initializing Log4J with a Servlet that executes at
startup time sets up Log4J for all J2EE components in the application. The following extra
settings in web.xml (Example B-6) ensure that InitServlet runs at startup time.

Example B-6. web.xml

 ...

 <servlet>

 <servlet-name>InitServlet</servlet-name>

 <servlet-class>com.jbossatwork.InitServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 ...

We've already seen the basic <servlet> tags in the Web Application Chapter. Any positive
integer value (0 or greater) for the <load-on-startup> tag causes JBoss to instantiate
InitServlet and invoke its init() method when JBoss starts the web application. For further
information on loading Servlets on startup, see one of the Servlet books in the References
section.

The Web Application Chapter showed how to use XDoclet tags for core Servlet deployment .
In keeping with XDoclet-based development, the InitServlet now uses an additional attribute
load-on-startup="1"on the @web.servlet XDoclet tag to generate the <load-on-startup>
element in web.xml (Example B-7).

Example B-7. InitServlet.java

package com.jbossatwork;

import javax.servlet.*;

import java.io.*;

import org.apache.commons.logging.*;

import com.jbossatwork.util.*;

/**

 * InitServlet sets up Log4J for the application.

 *

 * @web.servlet

 * name="InitServlet"

 * load-on-startup="1"

 *

 */

public class InitServlet extends GenericServlet {

 private Log log = LogFactory.getLog(InitServlet.class);

 private ServletContext servletContext;

 public void init() {

 servletContext = getServletContext();

 SystemPropertiesUtil.addToSystemPropertiesFromPropsFile(

 "log4j.extra.properties");

 Log4jConfigurator.setup("jbossatwork-log4j.xml");

 log.info("Testing Logging Setup ...");

 }

 public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException {

 }

}

Rather than putting all the low-level setup code in the InitServlet, the init() method defers
to utility objects:

 Calls SystemPropertiesUtil.addToSystemPropertiesFromPropsFile() to add the
properties from the log4j.extra.properties file to the System Properties.

 Calls Log4jConfigurator.setup() to configure Log4J with our Log4J configuration file,
jbossatwork-log4j.xml.

J2EE Design Notes

We could have used a JMX MBean (Managed Bean) to initialize the JAW Motors
application instead of using a Servlet. An MBean is similar to an initialization Servlet
because both run when JBoss starts up. An MBean differs from an initialization
Servlet because an MBean enables you to use the JMX Console to change settings
such as Log4J Levels while the application is still running. We chose an initialization
Servlet because we didn't need to dynamically change application properties and
settings at runtime. If you need this level of flexibility, though, an MBean would be
the best technology for the job.

We've shown the Log4J Configuration file, the Initialization Servlet, and application-specific
properties for setting up Log4J. Now let's look closely at the SystemPropertiesUtil utility class.

Page 318

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 319

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

B.3. Adding Application-Specific Properties to System
Properties
The InitServlet uses SystemPropertiesUtil to add the log4j.log.dir property (that
represents the directory that holds the log file) from the log4j.extra.properties to the
System Properties. The SystemPropertiesUtil utility looks like Example B-8.

Example B-8. SystemPropertiesUtil.java

package com.jbossatwork.util;

import java.util.*;

public class SystemPropertiesUtil {

 /**

 * Making the default (no arg) constructor private

 * ensures that this class cannnot be instantiated.

 */

 private SystemPropertiesUtil() { }

 public static void addToSystemPropertiesFromPropsFile(String

propsFileName) {

 Properties props = ResourceLoader.getAsProperties(propsFileName),

 sysProps = System.getProperties();

 // Add the keys/properties from the application-specific properties

to

 // the System Properties.

 sysProps.putAll(props);

 }

}

The SystemPropertiesUtil's addToSystemPropertiesFromPropsFile() method adds the
keys/properties from an application-specific properties file to the System Properties. The
application-specific properties file MUST reside in a directory listed on the CLASSPATH. The
SystemPropertiesUtil uses the ResourceLoader.getAsProperties() method to retrieve
application-specific properties file from the CLASSPATH. We'll cover the ResourceLoader utility
after we show the Log4jConfigurator.

Now that we have the logging infrastructure in place, let's look more closely at the
Log4jConfigurator.

Page 320

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 321

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 322

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.4. Configuring Log4J with a Configuration File
The InitServlet uses the Log4jConfigurator to set up Log4J with our Log4J Configuration file,
jbossatwork-log4j.xml. Example B-9 shows the Log4jConfigurator class.

Example B-9. Log4jConfigurator.java

package com.jbossatwork.util;

import java.net.*;

import org.apache.log4j.BasicConfigurator;

import org.apache.log4j.xml.DOMConfigurator;

public class Log4jConfigurator {

 /**

 * Making the default (no arg) constructor private

 * ensures that this class cannnot be instantiated.

 */

 private Log4jConfigurator() { }

 /**

 * Configures Log4J for an application using the specified Log4J XML

 * configuration

 file.

 *

 * @param log4jXmlFileName The specified Log4J XML configuration file.

 */

 public static void setup(String log4jXmlFileName) {

 URL url = ResourceLoader.getAsUrl(log4jXmlFileName);

 if (url != null) {

 // An URL (from the CLASSPATH) that points to the Log4J XML

 // configuration file that was provided, so use Log4J's

 // DOMConfigurator with the URL to initialize Log4J with the

 // contents of the Log4J XML configuration file.

 DOMConfigurator.configure(url);

 } else {

 // An URL that points to the Log4J XML configuration file wasn't

 // provided, so use Log4J's BasicConfigurator to initialize Log4J.

 BasicConfigurator.configure();

 }

 }

}

The Log4jConfigurator.setup() method configures Log4J for the JAW Motors application. The
ResourceLoader.getAsUrl() method retrieves the Log4J configuration file from the CLASSPATH.
If the configuration file is found, the Log4jConfigurator.setup() method uses the Log4J
DOMConfigurator.setup() method to configure Log4J with our Log4J configuration file.
Otherwise, the Log4jConfigurator.setup() method uses Log4J's BasicConfigurator.configure(
) method to configure Log4J with default settings.

Page 323

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 324

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.5. Loading Resources from the CLASSPATH
Both the SystemPropertiesUtil and Log4jConfigurator utilities use ResourceLoader to find
resources (a property file and the Log4J configuration file) on the application CLASSPATH. The
ResourceLoader utility looks like Example B-10.

Example B-10. ResourceLoader.java

package com.jbossatwork.util;

import java.io.*;

import java.net.*;

import java.util.*;

public class ResourceLoader {

 /**

 * Making the default (no arg) constructor private

 * ensures that this class cannnot be instantiated.

 */

 private ResourceLoader() { }

 public static Properties getAsProperties(String name) {

 Properties props = new Properties();

 URL url = ResourceLoader.getAsUrl(name);

 if (url != null) {

 try {

 // Load the properties using the URL (from the CLASSPATH).

 props.load(url.openStream());

 } catch (IOException e) {

 }

 }

 return props;

 }

 public static URL getAsUrl(String name) {

 ClassLoader classLoader = Thread.currentThread(

).getContextClassLoader();

 return classLoader.getResource(name);

 }

}

The ResourceUtil.getAsProperties() method calls ResourceUtil.getAsUrl() to find a
properties file as an URL on the application CLASSPATH. The props.load(url.openStream()) call
first opens the URL as an InputStream and then loads the properties file.

The ResourceUtil.getAsUrl() method uses the Thread Context ClassLoader to find a
properties file as an URL on the CLASSPATH application. The call to Thread.currentThread(
).getContextClassLoader() gets the current Thread's ClassLoader, and the
classLoader.getResource(propsFileName) call searches for a properties filename on the
application CLASSPATH and returns a java.net.URL that points to a resource (a properties file,
data file, .class file, and so on). The Thread Context ClassLoader is the ClassLoader used by
the creator of the Thread that runs your code. By using the Thread Context ClassLoader,
we're guaranteed to load the resource as long as it's on the application's CLASSPATH. For more
information on deployment , please see Chapter 3. See Appendix A for more information on
ClassLoaders.

Packaging properties files in a JAR is cleaner than using external property files that reside on a
disk directory because the directory structure for your deployment environment could differ on
each machine where you deploy your application. Using JAR files for packaging is a standard
technique for both J2SE and J2EE applications.

We've shown all the components to use Apache Commons Logging and Log4J, but where do all
the pieces belong?

Page 326

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 327

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

B.6. Logging Deployment
The new files go into the Common JAR file, as follows:

 The root directory holds the following:

o The Apache Jakarta Commons Logging JAR files

o The Log4J JAR file

o The log4j.extra.properties file that defines the property where the log file
resides

o The commons-logging.properties file that tells Jakarta Apache Commons Logging
to use Log4J

o The Log4J Configuration file, jbossatwork-log4j.xml

 Everything else remains unchanged.

The new SystemPropertiesUtil, Log4jConfigurator, and ResourceLoader objects are part of the
com.jbossatwork.util package, so their class files reside in the Common JAR's
com/jbossatwork/util directory. See Chapter 3 for more information on the Common JAR file.

Page 328

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

B.7. Logging Checklist
Before moving on to test the JAW Motors application's new logging functionality, let's recap
what we've done to add logging to the application:

 Created the commons-logging.properties file that tells Apache Jakarta Commons
Logging (JCL)) to use Log4J as its implementation.

 Used Apache JCL calls in the JAW Motors application code.

 Added a Log4J Configuration file, jbossatwork-log4j.xml, to tell Log4J to format
messages and where to log them.

 Developed a log4j.extra.properties file that defines where the log file resides.

 Wrote an Initialization Servlet to configure Log4J at JBoss startup, deferring the
low-level setup details to utility classes.

 Deployed the logging implementation in the Common JAR:

 The Apache JCL and Log4J JARs, properties files, and new utility classes go in the root
directory.

Page 329

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 330

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

B.8. Testing Logging
Now that we've developed all the logging code and infrastructure, let's test the application to
ensure that everything still works properly. Here are the steps to build and deploy the
application:

 Type ant in the root directory of appb to build the project.

 Shut down JBoss so the Ant script can clean up the JBoss deployment area.

 Type ant colddeploy to deploy the EAR file (jaw.ear) to the
$JBOSS_HOME/server/default/deploy directory. Notice that the Ant build script also
creates the logfile directory (specified by log4j.log.dir in the log4j.extra.properties
file).

 Start JBoss back up.

The Initialization Servlet runs at startup time, and you should see this message in the JAW
Motors logfile, ${log4j.log.dir}/jbossatwork.log:

2005-06-06 17:24:02,923 INFO [com.jbossatwork.InitServlet] - Testing Logging

Setup

...

Now point your browser to http://localhost:8080/jawthis takes you to the JAW Motors home
page. After running a credit check and buying a car, the log messages in the
${log4j.log.dir}/jbossatwork.log file should now look like this:

2005-06-06 17:24:02,923 INFO [com.jbossatwork.InitServlet] - Testing Logging

Setup

...

2005-06-06 17:25:19,163 INFO [com.jbossatwork.ControllerServlet] - Credit

Check:

2005-06-06 17:25:19,163 INFO [com.jbossatwork.ControllerServlet] - Name =

[Tom]

2005-06-06 17:25:19,163 INFO [com.jbossatwork.ControllerServlet] - SSN =

[[345834[958[34]]

2005-06-06 17:25:19,163 INFO [com.jbossatwork.ControllerServlet] - Email =

[fred@acme.org]

2005-06-06 17:25:19,293 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean] -

CreditCheckProcessorBean.onMessage(): Received message.

2005-06-06 17:25:19,293 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean]--

Credit Check:

2005-06-06 17:25:19,293 INFO

[com.jbossatwork.ejb.CreditCheckProcessorBean]--Name

= [Tom]

2005-06-06 17:25:19,293 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean] -

SSN

= [[345834[958[34]]

2005-06-06 17:25:19,293 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean]--

Email = [fred@acme.org]

2005-06-06 17:25:19,303 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean]--

Verifying Credit ...

2005-06-06 17:25:26,804 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean]--

Credit Check Result = [Pass Credit Check]

2005-06-06 17:25:26,844 INFO [com.jbossatwork.ejb.CreditCheckProcessorBean]--

Sending Email to [fred@acme.org] ...

2005-06-06 17:25:48,465 INFO [com.jbossatwork.ControllerServlet] - carId =

[99],

price = [13500.0]

Page 331

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://localhost:8080/jaw
http://localhost:8080/jaw
http://www.processtext.com/abcchm.html

Page 332

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

B.9. Conclusion
In this appendix, we showed how to use Apache JCL as the high-level logging API used by an
application. We hid the Log4J logging implementation to enable migration to another
technology without changing the code. We then showed how to configure Apache JCL and
Log4J in a J2EE/JBoss environment, and how to instrument your code with logging.

Page 333

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Appendix C. JAAS Tutorial
The Java Authentication & Authorization Service (JAAS) enables an application to protect its
resources by restricting access to only users with proper credentials and permissions. JAAS
provides a layer of abstraction between an application and its underlying security mechanisms,
making it easier to change security technologies and realms without impacting the rest of the
system.

Page 334

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 335

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

C.1. JAAS
JAAS is a standard Java extension in J2SE 1.4, and it provides pluggable authentication that
gives application designers a wide choice of security realms:

 DBMS

 Application Server

 LDAP

 Operating System (UNIX or Windows NT/2000)

 File System

 JNDI

 Biometrics

JAAS supports single sign-on for an application. Rather than forcing the user to log in to a
web site, and then log in again to a forum or a backend legacy system used by the
application, JAAS coordinates all these steps into one central login event to help coordinate
access to all systems that the user needs.

We chose JAAS as the basis for our authentication strategy because:

 It provides a security context that covers the entire J2EE architecture from the web
tier to the EJB tier.

 It is application-server neutral.

 It integrates with the Java 2 security model.

 It is part of the J2SE 1.4 extension API.

 It is more sophisticated than the other authentication mechanisms and provides more
functionality.

 It supports single sign-on by coordinating multiple security realms.

 It addresses authorization in addition to authentication.

 It provides good encapsulation for authentication and authorization, enabling an
application to be independent of the underlying security mechanisms it uses.

C.1.1. JAAS Core Concepts, Classes, and Interfaces

Here are the key pieces of the JAAS framework and the roles that they play:

javax.security.auth.Subject

A Subject is a user ("John Smith") or outside entity ("Acme") that accesses the
system. The Subject groups one or more Principals together and holds the user's
credentials.

java.security.Principal

Although not officially part of the JAAS packages (javax.security.*), the Principal
acts as a role for a Subject (user).

Credentials

A credential can be a password, certificate, or key that identifies the user to the
system. The JAW Motors application uses passwords.

javax.security.auth.spi.LoginModule

A LoginModule wraps an underlying security realm and authenticates a user.

javax.security.auth.callback.Callback

A Callback holds user authentication credentials for the LoginContext.

javax.security.auth.callback.CallbackHandler

A CallbackHandler manages the Callbacks associated with the LoginContext.
LoginModules interact with the CallbackHandler to get Callback objects.

javax.security.auth.login.LoginContext

A LoginContext coordinates the LoginModules and CallbackHandlers. An application uses
the LoginContext to authenticate a user.

java.security.PriviligedAction, java.security.PrivilegedExceptionAction

These actions run code that's protected by a login. It is an implementation of the GoF
Command pattern. The difference between these two interfaces is that
PrivilegedExceptionAction runs code that can throw checked Exceptions, and
PrivilegedAction does not run code that can throw checked Exceptions.

C.1.2. LoginContext

The JAAS LoginContext authenticates a user. The LoginContext instantiates the LoginModule
(s) (that log the user into the security realm) based on the contents of the LoginModule
Configuration file. By storing the LoginModule setup information in a configuration file, you can
change the LoginModule(s) without modifying the application. The LoginContext invokes the
LoginModule(s) for an application, and acts as the controller for the logon process. If the
application accesses multiple security realms, the LoginContext coordinates the logon process
across multiple LoginModule(s) (one per security realm).

C.1.3. LoginModule

The LoginModule logs a user/Subject into a security realm based on their username and
password. A LoginModule could interact with an operating system, a database, JNDI, LDAP, or
a biometric device like a retinal scanner or touch pad. Application developers normally don't
need to know very much about LoginModules because the LoginContext invokes them on behalf
of an application. Thus your code never interacts with LoginModules. To add or remove a
LoginModule used by your application, you only need to modify the LoginModule Configuration
fileyour code remains unchanged. This indirection enables an application to be independent of
the underlying security mechanisms used

Although you could write your own LoginModule, doing so is usually unnecessary because of
the abundance of quality third-party Open Source implementations available. You only need to
know how to configure (in the LoginModule Configuration file) and deploy them for your
particular runtime environment. If the Open Source LoginModule implementations don't provide
all the functionality you need, you can either modify the code from that library or write your
own LoginModule. Since this topic is outside the scope of this book, please see the JAAS
LoginModule Developers' Guide (
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html) for further
details.

Tagish

Tagish has a set of Open Source JAAS LoginModules released under the GNU (Lesser
GNU Public License (LGPL) found at: http://free.tagish.net/jaas. The Tagish collection
has the following LoginModules:

 DBMS

 File System

 Windows NT/2000 domain

Sun Microsystems

Sun bundles several LoginModules with J2SE 1.4. However, they are in the
com.sun.security.auth.module package and not officially part of J2SE 1.4 because
they're Sun's implementation of the JAAS interfaces. Sun provides the following
LoginModules:

 Kerberos

 Key Store

 JNDI

 Windows NT

 UNIX

JBoss

JBoss provides several LoginModules with its distribution, including:

 DBMS

 File-based

 Key Store

 LDAP

 External Client

We could easily configure the Tagish, Sun, or JBoss LoginModules and use them with the JAW
Motors application. We chose the JBoss LoginModules because they're already bundled with
JBoss and we don't need to configure any third party JARs. Even though we use LoginModules
provided by JBoss, the application code remains vendor-neutral because:

 The LoginModules are configured in an external configuration file.

 The application code doesn't change if you use different LoginModules.

C.1.4. Callback

The Callback interface enables other JAAS components to retrieve user authentication
information, such as usernames and passwords. The Callback implementations include:

ChoiceCallback

Enables LoginModules to display a list of choices and receive a response.

ConfirmationCallback

Allows LoginModules to ask for a confirmation like YES/NO or OK/CANCEL.

NameCallback

Enables LoginModules to ask for a username and receive a response.

PasswordCallback

Allows LoginModules to ask for a password and receive a response.

The external application uses the NameCallback to hold the username and the PasswordCallback
to hold the password. As you'll see in the next section, we use these Callbacks a bit
differently than the standard JAAS documentation, so it works in a command-line application.

C.1.5. CallbackHandler

The CallbackHandler is an interface that enables LoginModules to retrieve authentication
information such as a username and password entered by the user. The CallbackHandler is the
most confusing part of the JAAS API because its whole design premise is that you don't have
user authentication data yet, and that the application needs to query the user for this
information.

However, this type of user interaction flies in the face of the client application's design
because the user already entered her username and password on the command line. The
external client just needs to pass the user's data to the LoginContext. To make JAAS
compatible with our application, we strip out the functionality that queries for a user name
and password that you would see in a typical JAAS API tutorial. We'll implement a passive
CallbackHandler that acts as a simple pass-through that holds only the username and
password without querying the user for further information. The LoginModule(s) simply call the
CallbackHandler's handle() method to retrieve the username and password that the user
previously entered on the command line, as in Example C-1.

Example C-1. MyPassiveCallbackHandler.java

import javax.security.auth.*;

import javax.security.auth.callback.*;

// Simple placeholder that stores userName and password.

public class MyPassiveCallbackHandler implements CallbackHandler {

 private String userName;

 private String password;

 public MyPassiveCallbackHandler(String userName,

 String password) {

 this.userName = userName;

 this.password = password;

 }

 public void handle (Callback[] callbacks)

 throws UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; ++i) {

 if (callbacks[i] instanceof NameCallback) {

 NameCallback nc = (NameCallback) callbacks[i];

 nc.setName(userName);

 } else if (callbacks[i] instanceof

 PasswordCallback) {

 PasswordCallback pc =

 (PasswordCallback) callbacks[i];

 pc.setPassword(password.toCharArray());

 } else {

 throw new UnsupportedCallbackException(callbacks[i],

 "Unrecognized Callback");

 }

 }

 }

}

Once you get past this indirection, the rest of the JAAS API is straightforward. Figure C-1
shows the interactions in the API.

Figure C-1. JAAS sequence diagram

The application instantiates a LoginContext with the application name and an
application-specific CallbackHandler (in our case, we instantiate MyPassiveCallbackHandler
with a username and password entered from the login form). The LoginContext reads the
LoginModule Configuration file and instantiates the LoginModule(s). The application then calls
LoginContext's login() method, which in turn calls the login() method of each LoginModule.
MyPassiveCallbackHandler returns the NameCallback (with the username) and PasswordCalback
to each LoginModule when it calls MyPassiveCallbackHandler's handle() method.

C.1.6. JAAS LoginModule Configuration and Deployment

The JAAS LoginModule Configuration file configures the LoginModule(s) used by a J2SE
application, specifies their runtime behavior, and optionally provides them with initialization
parameters. The template in Example C-2 shows the format of a LoginModule Configuration file.

Example C-2. LoginModule Configuration file

Application1 {

 ModuleClassInvokedFirst Flag

 ModuleOption1=value1

 ...

 ModuleOptionN=valueN

 ;

 ModuleClassInvokedLast Flag

 ModuleOption1=value1

 ...

 ModuleOptionN=valueN

 ;

};

...

ApplicationN {

 ...

};

The LoginContext invokes the LoginModules in the order declared in the Configuration file. The
Module Options are initialization parameters (with values) for each LoginModule.

C.1.7. LoginModule Configuration Flags

The Flag in the LoginModule Configuration file serves two purposes:

 It gives the runtime behavior of each LoginModule.

 It tells the LoginContext how to coordinate the LoginModule stack.

Here are the options available for LoginModule Configuration Flags:

Required

The LoginModule has to succeed. The LoginContext executes other LoginModules in the
stack, regardless of the success or failure of a Required LoginModule. The overall
authentication process fails if a Required LoginModule fails.

Requisite

The LoginModule must succeed. If it succeeds, the LoginContext continues executing
other LoginModules. If it fails, the LoginContext immediately returns control to the caller
without invoking any other LoginModules.

Sufficient

The LoginModule is not required to succeed. If it succeeds, the LoginContext
immediately returns control to the application, and does not invoke the rest of the
LoginModules in the stack. If it fails, the LoginContext continues executing other
LoginModules.

Optional

The LoginModule does not have to succeed. The LoginContext executes other
LoginModules in the stack, regardless of the success or failure of an Optional
LoginModule.

Although JAAS provides a sophisticated set of options, we're going to be conservative and set
our LoginModule(s) to Required because we don't want to allow the user to access sensitive
portions of an application unless they successfully log on to all the security realms.

When filled in with real LoginModules and settings, the above LoginModule Configuration file
template works in a J2SE environment when you add it your application's CLASSPATH. We use a
J2SE-style LoginModule Configuration file when we create an external application client, but
this won't work with most J2EE application servers. Refer to the Security chapter to see how
to configure a server-side LoginModule on JBoss.

Page 336

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://free.tagish.net/jaas
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://free.tagish.net/jaas
http://www.processtext.com/abcchm.html

Page 337

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 338

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

C.2. Client-Side JAAS
To use JAAS from an external client, we need to take the following steps:

 Write the client code, using the MyPassiveCallbackHandler from the CallbackHandler
section.

 Configure a client-side LoginModule.

 Set up a J2SE Security Policy file.

C.2.1. External Client Application that Uses JAAS

The following code snippet shows how an external application would use JAAS authentication,
assuming that the user already entered his username and password. We first instantiate an
application-specific CallbackHandler implementation, MyPassiveCallbackHandler, with the
userName and password. We then create the JAAS LoginContext by using the application name
along with our CallbackHandler. The "Client-JBossAtWorkAuth" application name comes from
the LoginModule Configuration filesee the "Client-Side LoginModule Configuration" section for
details. The LoginContext's login() method then authenticates the user. If login() tHRows
a LoginException, then the logon process failed. If the logon succeeds, the application calls
the code the user is allowed to access, as in Example C-3.

Example C-3. Sample external client

import javax.security.auth.login.*;

import javax.security.auth.*;

import java.security.*;

...

try {

 MyPassiveCallbackHandler myCallbackHandler = null;

 // Set Security Association CallbackHandler-specific settings

 myCallbackHandler = new MyPassiveCallbackHandler(userName, password);

 // Get Login Context (NOTE: Client-JBossAtWorkAuth is the application

 // name in the client-auth.conf LoginModule Configuration file)

 System.out.println("Creating the JAAS Login Context");

 LoginContext loginContext = new LoginContext("Client-JBossAtWorkAuth",

 myCallbackHandler);

 // Login

 System.out.println("Logging in as user [" + userName + "]");

 lc.login();

 // Protected code goes here.

} catch (LoginException le) {

 System.out.println(le.getMessage());

}

We've now written the core client code and the CallbackHandler, but there's still a little more
work to do before we can run the client. We need to take the following steps:

 Configure a client-side LoginModule.

 Create a J2SE Security file.

 Set up the Client's CLASSPATH.

C.2.2. Client-Side LoginModule Configuration

We have to configure a client-side LoginModule in Example C-4 so the client application can
instantiate a LoginContext.

Example C-4. client-auth.conf

Client-JBossAtWorkAuth {

 org.jboss.security.ClientLoginModule required;

};

When called by the client application, the LoginContext's constructor reads this LoginModule
Configuration file to set up a JBoss-specific JAAS LoginModule that communicates with the
JBoss server. The application then uses the LoginContext to log on to the JBoss server using
JAAS.

C.2.3. J2SE Security Policy File

The Security Policy File in Example C-5 gives the client the privileges it needs to use the JAAS
API.

Example C-5. security.policy

grant codeBase "file:.${/}-" {

 permission javax.security.auth.AuthPermission "createLoginContext";

 permission javax.security.auth.AuthPermission "doAs";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

 permission javax.security.auth.AuthPermission "modifyPrincipals";

 permission javax.security.auth.AuthPermission "getSubject";

 java.util.PropertyPermission "read";

 java.security.auth.debug "read";

};

The javax.security.auth.AuthPermission settings in this file grant permissions to:

 Create a LoginContext.

 Call Subject.doAs() and doAsPrivileged() so the client can access protected code.

 Allow a CallbackHandler to modify Principals.

 Enable the client to get the Subject from the LoginContext.

The java.util.PropertyPermission setting enables the client to read Properties files, and the
java.security.auth.debug setting enables the client to read the java.security.auth.debug
System propertysee the next section for details.

C.2.4. Setting the Client CLASSPATH

The client requires the following CLASSPATH settings to run properly:

java -classpath.;$JBOSS_HOME/client/jbosssx-client.jar \

-Djava.security.manager \

-Djava.security.policy="security.policy" \

-Djava.security.auth.policy="security.policy" \

-Djava.security.auth.login.config="client-auth.conf" \

-Djava.security.auth.debug="all" com.jbossatwork.client.JaasClient

The jbosssx-client.jar contains the JBoss JAAS client-side classes, and the
java.security.manager System property tells the JVM to use a security policy file. The
java.security.policy and java.security.auth.policy System properties tell the Java Security
Manager to use our security policy file, security.policy. The java.security.auth.login.config
System property tells the Java Security Manager to use our client-side LoginModule
Configuration file, client-auth.conf.

To check for any client-side configuration problems, we turn on JAAS debug options by
specifying the java.security.auth.debug System Property. Here are some of the valid values
for java.security.auth.debug:

all

Turn on all JAAS debugging.

logincontext

Enable LoginContext debugging.

policy

Configure access control policy debugging.

We're setting java.security.auth.debug to all so we can see everything. You can turn this
setting off later on if you'd like.

Page 339

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 340

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

C.3. Conclusion
In this appendix, we reviewed portions of the Security chapter and added detailed coverage
of other aspects of the JAAS API, including client-side LoginModule configuration and classes
such as the Callback, CallbackHandler, and LoginContext.

Page 341

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of JBoss at Work: A Practical Guide is a golden eagle (Aquila
chrysaetos), named for the golden feathers on the back of its neck. This large bird of prey is
one of the two eagle breeds found in the United States, inhabiting parts of the West as well
as Canada, Alaska, Eurasia, and northern Africa. The golden eagle makes its home in desert
grasslands and above the timberline. There it can stretch its wings (7 feet across) and go for
a nice swoop at 200 mph, or catch a rising mass of warm air called a thermal and spiral
upward into the sky.

Golden eagles build large stick nests in trees or cliff walls. They may build multiple nests within
a nesting range and alternate among them, depending on the year. Since golden eagles
continually elaborate on their nests, the nests can grow quite large, reaching 8 to 10 feet
across and 3 to 4 feet in depth. Both the male and female participate in the rearing of the
eaglets, with the male doing most of the hunting and the female doing most of the incubating.
If food is scarce, the larger of the eaglets may commit siblicide.

The young fledge when 72 to 84 days old and depend upon their parents for another 3
months. After this period they either migrate or move out of their parents' territory, but they
generally winter in their natal area. At four years of age, golden eagles mate. They often stay
paired with the same mate for lifeabout 30 years. Golden eagles are excellent hunters and for
this reason are rarely forced to migrate far from their nesting territory. They feast on over 50
species of mammals, 48 birds, 5 reptiles, and 2 fish. Among these are included prairie dogs,
rabbits, ground squirrels, grouse, ducks, chukars, marmots, foxes, skunks, cats, meadowlarks,
and snakes. Golden eagles are protected in the U.S. through the U.S. Fish and Wildlife
Service. Possessing a feather or any other body part belonging to this bird will incur a $10,000
fine or a jail term of up to 10 years. (There are some exceptions for Native American
traditions.)

Colleen Gorman was the production editor and proofreader, and Ann Schirmer was the
copyeditor for JBoss at Work: A Practical Guide. Jamie Peppard and Genevieve d'Entremont
provided quality control. Loranah Dimant provided production assistance. Johnna VanHoose
Dinse wrote the index.

Karen Montgomery designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from Johnson's Natural History. Karen
Montgomery produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond
font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka;
the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano,
Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop CS.
The tip and warning icons were drawn by Christopher Bing. This colophon was written by Lydia
Onofrei.

Page 342

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 343

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Page 344

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

<attribute name> element, hibernate-service.xml file
<class> element, car.hbm.xml file
<id> element, car.hbm.xml file
<mbean> element, hibernate-service.xml file
<property> element, car.hbm.xml file

Page 345

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

ACCOUNTING table
AccountingDAO, HibernateAccountingDAO
AccountingDTO object
Ant
?? automated deployment and
?? build script, XDoclet and
?? databases and
?? EAR task
?? EJB JAR file creation
?? HBM file
?? installation
?? WAR and
Apache
?? Axis, Web Services client and
?? Commons Logging
?? JCL API
?? Log4J
???? Appender interface
???? Common Jar file
???? configuration
???? configuration file
???? initialization
???? Layout interface
???? Logger class
???? PatternLayout
???? resource loading
Appender interface (Log4J)
application-specific properties, System properties and
application.xml file
applications
?? presentation tier
?? three-tier
architecture, JMS
archives, HARs (Hibernate Archives)
asynchronous processing, EJBs and
authentication
?? declarative, w eb.xml and
?? form-based
???? login form
?? J2EE security
?? w eb-based
authorization
?? declarative, w eb.xml and
?? J2EE security

Page 346

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 347

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Bean Class
bin/ directory
BMPs (Bean-Managed Persistence)
BMTs (Bean-Managed Transactions)
?? MDBs and
build.xml files
?? common.jar and
business logic, removing from Controller Servlet
Business tier
Buy Car page, JAW Motors example

Page 348

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

C#, Web Services client
caching, EJBs and
Callback interface (JAAS)
CallbackHandler interface (JAAS)
car.hbm.xml file
CarBean
CarDAO
CarDTO, status field
classes
?? Bean Class
?? JAAS
?? JMS API
ClassLoader Repository
ClassLoaders
?? debugging issues
?? Delegation Model
?? Extension ClassLoader
?? J2EE
?? JBoss
?? namespaces
?? options
?? troubleshooting
client/ directory
clients
?? Session Beans and
?? Web Services
???? implementation
CMPs (Container-Managed Persistence)
CMTs (Container-Managed Transactions) 2nd
?? Hibernate and
?? MDBs and
collections, Web Services and
common directory
Common JAR
common sub-project
commons-logging.properties file
complexity, EJBs and
configuration
?? Log4J (Apache)
?? Log4J files
?? LoginModule
?? servers
???? directory structure
Context Root, WAR files
Controller Servlet
?? business logic removal
?? refactoring
?? Session Beans, calling
controllers
Credit Check link
credit check, JAW Motors example
CSS (cascading style sheets), WAR files

Page 349

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 350

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 351

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

DAO (Data Access Object), creating
data types, Web Services
database connection pooling, EJBs and
databases
?? Ant and
?? checklist
DataSource
?? descriptors
?? Hypersonic database and
?? JDBC
?? JDBC driver JARs
debug logging level
debugging
?? ClassLoaders and
?? logging and
declarative authentication, w eb.xml and
declarative authorization, w eb.xml
declarative security, J2EE
?? administrative actions
declarative transactions, EJBs and
deployment
?? as WAR file
?? automated, Ant and
?? EAR file
?? EARs and
?? EJB JAR file
?? JavaMail API
?? JMS Destinations
?? MDBs
???? XDoclet and
?? Stateless Session beans, automating w ith XDoclet
?? WARs and
?? Web Services
???? Ant script
???? automation
???? testing
???? XDoclet and
?? w eb-based, EJB-based JNDI references
deployment descriptors
?? EJB
???? JavaMail-based JNDI references
?? JMS-based JNDI references
developers
directories
?? bin/
?? client/
?? common
?? docs/
?? dtd/
?? examples/
?? lib/
?? licenses/
?? schema/
?? server configuration
?? server/ 2nd
?? structure
?? temporary
?? tests/
?? Web Services client
?? w ebapp
distributed transactions, EJBs and
docs/ directory
domains
?? mid-level
?? top-level
drivers, JDBC
dtd/ directory

Page 352

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 353

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 354

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

EAR files
?? Ant EAR task
?? application.xml file
?? Common JAR
?? deployment
?? EJB JAR file, adding
?? EJB module
?? HAR, adding
?? Java module
?? WAR file comparison
?? Web module
EARs (Enterprise Archives)
EJB deployment descriptors, JavaMail-based JNDI references
EJB JAR file
?? creating, Ant task and
?? EAR and
EJB module, EAR
EJB tier security
?? w eb tier security integration
EJB-based programmatic security
EJBs (Enterprise JavaBeans)
?? asynchronous processing
?? caching and
?? complexity and
?? database connection pooling and
?? declarative transactions
?? deployment descriptors
?? distributed transactions and
?? ejb sub-project
?? ejb-jar.xml and
?? Entity Beans
?? JAR files
?? JNDI references, w eb-based deployment descriptors
?? local calls
?? MDBs (Message-Driven Beans)
?? persisence and
?? read-only applications and
?? remote access and
?? remote calls
?? security
?? Session Beans
???? Stateful
???? Stateless
?? settings automation, XDoclet and
?? stateless session beans
?? testing secure methods
?? threads and
??transactions
???? BMTs
???? CMTs
???? Mandatory
???? Never
???? NotSupported
???? Required
???? RequiresNew
???? Supports
email
??sending messages
???? JavaMail
???? JavaMail API
???? MDB
?? TextEmail utility
ENC (Environmental Naming Context)
Entity Beans
error logging level
examples/ directory
Extension ClassLoader

Page 355

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 356

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

fatal logging level
filterByStatus(), HibernateDAO
form-based authentication
?? login form
forms, login
FQDN (Fully Qualified Domain Name)
framew orks

Page 357

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

HARs (Hibernate Archives)
?? creating
?? EAR and
HBM files
?? Ant tasks
Hibernate
?? checklist
?? CMT and
?? introduction
?? MBean service, configuration file
hibernate-service.xml file
HibernateAccountingDAO
HibernateCarDAO
??cars
???? adding
???? deleting
???? editing
HibernateDAO, filterByStatus()
Home Interfaces
?? Local Home Interface
?? Remote Home Interface
hot deployment
Hypersonic databases
?? DataSource and
?? instances

Page 358

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

implementation
?? J2EE Web Services
?? Web Services client
info logging level
initialization
?? Log4J (Apache)
?? Log4J Servlet
installation
?? Ant
?? Java
?? JBoss
?? JDK
?? XDoclet
interfaces
??Home Interfaces
???? Local Home Interface
???? Remote Home Interface
?? JAAS
?? Local Interface
?? Remote Interface
InventoryFacadeBean EJB, modifying
InventoryFacadeBean, buyCar()
Iteration 1, JAW Motors example
?? review
?? Session Bean introduction
?? testing
Iteration 2, JAW Motors example
?? review ing
?? testing
Iteration 3, JAW Motors example
?? review ing
?? testing

Page 359

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 360

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

J2EE
?? ClassLoaders and
??Declarative Security
???? administrative actions
?? security
???? authentication
???? authorization
???? declarative
???? guests
???? managers
?? Web Services and
???? implementation
JAAS (Java Authentication & Authorization Service)
?? Callback interface
?? CallbackHandler interface
?? classes
?? client-side
?? domain settings, jboss.xml
?? domain, jboss.xml
?? interfaces
?? jboss-w eb.xml, domain settings
?? LoginContext
?? LoginModule
?? LoginModule Configuration file
?? security realm deployment
?? tutorial
JAR files
?? EJB JAR files
?? JDBC drivers
Java installation
Java module, EAR
JavaMail API
?? deployment
?? introduction
?? JNDI calls and
??JNDI references
???? EJB deployment descriptors and
???? XDoclet and
?? POP (Post Office Protocol) and
?? sending messages 2nd
?? sessions
?? SMTP (Simple Mail Transfer Protocol) and
JAW Motors example
?? Buy Car page
?? credit check, JavaMail and
?? introduction
??Iteration 1
???? review
???? Session Bean introduction
???? testing
?? Iteration 2
???? review
???? testing
?? Iteration 3
???? review ing
???? testing
??Session Beans
???? adding
???? calling from Controller Servlet
???? introduction
JAX-RPC mapping file
?? Web Services
?? Web Services client
JBoss
?? ClassLoaders
?? directory structure
?? installation
?? reasons to use
JBoss 4.x, Web Services and
JBoss at Work
jboss-w eb.xml
?? JAAS domain settings
jboss.xml
?? JAAS domain
?? JAAS domain settings
JCL (Jakarta Commons Logging) API
?? Apache
?? logging and
JDBC
?? CarDAO
?? databases checklist
?? DataSource
?? drivers, JARs
?? overview
JDK (Java 2 Development Kit) installation
Jdk14Logger
JDO (Java Data Objects)
JMS (Java Message Service)
?? architecture overview
?? creating messages
?? introduction
?? JNDI lookup calls
?? MDBs and
??message models
???? P2P
???? Pub-Sub
?? messaging models
?? sending messages 2nd 3rd
?? Unified API
JMS API classes
JMS Destinations, deploying
JNDI (Java Naming and Directory Interface)
?? ENC and
?? JavaMail API and
?? lookup calls
?? lookup calls, JMS and
?? resources, application links
?? Web Services client
?? w eb.xml and
JNDI lookups, creating
JNDI references
?? EJB-based, w eb-based deployment descriptors
??JavaMail-based
???? EJB deployment descriptors and
???? XDoclet and
?? w eb-based deployment descriptors
JSPs
?? secure, testing
?? WAR files
JSTL, WAR files
JWSDP (Java Web Services Developer's Pack), XDoclet and

Page 361

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 362

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Layout interface, Log4J (Apache)
lib/ directory
licenses/ directory
local calls, EJBs
Local Home Interface
Local Interface
Log interface, JCL API
Log4J (Apache)
?? Appender interface
?? configuration
???? resource loading
?? configuration file
?? deployment
?? initialization
???? Servlet
?? Layout interface
?? Logger class
?? PatternLayout
log4j.extra.properties file
Log4Logger
Logger class, Log4J
logging
?? auditing
?? checklist
?? Common Jar file
?? Commons Logging package, commons-logging.properties file
?? debug level
?? debugging and
?? error level
?? fatal level
?? info level
?? JCL API
?? Jdk14Logger
?? Log4J (Apache)
?? Log4Logger
?? logging levels
?? LogKitLogger
?? review ing
?? SimpleLogger
?? testing
?? trace logging level
?? w arn level
login form
LoginContext (JAAS)
LoginModule (JAAS) 2nd
?? configuration
?? security realm deployment
LoginModule Configuration file (JAAS)
LogKitLogger
lookups, JNDI
?? creating

Page 363

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 364

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

master build file
MBean service, Hibernate configuration files
MDBs (Message-Driven Beans) 2nd 3rd
?? BMTs and
?? deployment
???? XDoclet and
?? sending email messages
?? transactions
?? w riting
message models (JMS)
?? P2P
?? Pub-Sub
messages (JMS), sending
MLDs (mid-level domains)
MVC (Model/View /Controller) pattern
MVC framew ork model

Page 365

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

OODBMS (object-oriented databases)
ORMs (Object/Relational Mappers)
?? cons
?? pros

Page 366

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

P2P (Point-to-Point) messaging model (JMS)
PatternLayout (Log4J)
Perl, Web Services client
persistence
?? EJBs and
?? options
Persistence tier
?? definition
POJO (Plain Old Java Object)
POP (Post Office Protocol), JavaMail and
presentation tier
programmatic security, EJB-based
programmatic w eb-based security
programmers
properties, application-specific, system properties and
Pub-Sub (Publish-Subscribe) message model, JMS
Python, Web Services client

Page 367

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

read-only applications, EJBs and
refactoring, Controller Servlet
remote access, EJBs and
remote calls, EJBs
Remote Home Interface
Remote Interface
resource loading, Log4J

Page 368

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

schema/ directory
security
?? access restriction
?? EJB tier
?? EJBs and
?? J2EE
???? authentication
???? authorization
???? declarative
???? guests
???? managers
?? JAAS
??programmatic
???? EJB-based
???? w eb-based
?? w eb, testing
?? w eb-based
?? w eb-based authentication
security credentials propagation
?? w eb tier
?? w eb.xml
security realm
??deployment
???? JAAS-based
???? LoginModule
SEI (Service Endpoint Interface), Web Services 2nd
?? ejb-jar.xml modification
?? w ebservices.xml
server configuration
?? directory structure
server/ directory 2nd
Service
ServiceLocator, JNDI lookup calls
servlet container
Session Beans
?? clients
?? JAW Motors example
???? adding
???? calling from Controller Servlet
?? local interfaces and
?? Stateful
?? Stateless
SimpleLogger
SMTP (Simple Mail Transfer Protocol), JavaMail and
SOAP (Simple Object Access Protocol)
SOAP Servlet
SSL configuration
Stateful Session Beans
Stateless Session Beans
?? deployment automation, XDoclet and
Sun Microsystems, Login Modules
system properties, application-specific properties and

Page 369

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 370

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Tagish LoginModule
taglibs
temporary directories
testing
?? EJB secure methods
?? Iteration 1, JAW Motors example
?? Iteration 2, JAW Motors example
?? Iteration 3, JAW Motors example
?? logging
?? secure JSPs
?? w eb security
?? Web Services client
?? Web Services deployment
tests/ directory
TextEmail utility
threads, EJBs and
three-tier applications
tiers
?? Business
?? Persistence
?? Web tier
TLDs (top-level domains)
tools setup
top-level domains (TLDs)
trace logging level
transactions
?? declarative, EJBs and
?? distributed, EJBs and
??EJBs
???? BMTs
???? CMTs
???? Mandatory
???? Never
???? NotSupported
???? Required
???? RequiresNew
???? Supports
?? MBDs

Page 371

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 372

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Unified API (JMS)
URLs, Web Services

Page 373

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

VBAD (Virtual Big Auto Dealership)
View Cars page
?? CSS
?? HTML
?? JSP
?? JSTL

Page 374

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 375

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

WAR files
?? Ant and
?? Context Root
?? CSS
?? deployment as
?? EAR comparison
?? HTML
?? JSP
?? JSTL
w arn logging level
WARs (Web Archives)
?? Common Jar
Web module, EAR
w eb security testing
Web Service Proxy
Web Services
?? architecture
?? checklist
?? client
???? checklist
???? implementation
???? testing
?? collections and
?? data types
?? deployment
???? Ant script
???? automation
???? testing
???? XDoclet and
?? InventoryFacadeBean EJB modification
?? J2EE and
???? implementation
?? JAX-RPC Mapping file
?? JBoss 4.x and
?? JWSDP and
?? SEI 2nd
???? ejb-jar.xml
???? w ebservices.xml
?? SOAP Servlet 2nd
?? URLs
?? VBAD and
?? Web Service Proxy
?? WSDL file 2nd
Web tier
?? EJB tier security integration
w eb-based authentication
w eb-based deployment descriptors
?? EJB-based JNDI references
?? JNDI references, JMS-based
w eb-based security
?? programmatic
w eb.xml
?? access restriction
?? authentication, declarative
?? authorization, declarative
?? jboss-w eb.xml, JAAS domain settings
?? JNDI references
?? security credential propagation
w ebapp directory
w ebapp sub-project
WSDL (Web Services Definition Language)
?? files

Page 376

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 377

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

XDoclet
?? Ant build script
?? EJB security automation
?? installation
?? JavaMail-based JNDI references
?? MDB deployment
?? Servlet deployment
?? Stateless Session Beans, deployment automation
?? Web Services deployment and
XML, application.xml file

Page 378

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [H] [I] [J] [L] [M] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

YAGNI (You Ain't Gonna Need It)

Page 379

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

	JBoss at Work: A Practical Guide
	Table of Contents
	Copyright
	About the Author
	Preface
	Audience
	About This Book
	Assumptions This Book Makes
	Conventions Used in This Book
	Using Code Examples
	Safari Enabled
	Comments and Questions
	Acknowledgments

	Chapter 1. Getting Started with JBoss
	Section 1.1. Why
	Section 1.2. Why JBoss?
	Section 1.3. The Example: JAW Motors
	Section 1.4. The Tools
	Section 1.5. Installing JBoss
	Section 1.6. Deploying Applications to JBoss
	Section 1.7. Looking Ahead...

	Chapter 2. Web Applications
	Section 2.1. The Servlet Container
	Section 2.2. Three-Tier Applications
	Section 2.3. Exploring the Presentation Tier
	Section 2.4. Building the View Cars Page
	Section 2.5. Adding a Model and Controller
	Section 2.6. Looking Ahead...

	Chapter 3. Building and Deploying an EAR
	Section 3.1. WARs Versus EARs
	Section 3.2. Application.xml
	Section 3.3. Common JAR
	Section 3.4. Deploying the EAR
	Section 3.5. Adding a DAO
	Section 3.6. Using XDoclet
	Section 3.7. Looking Ahead...

	Chapter 4. Databases and JBoss
	Section 4.1. Persistence Options
	Section 4.2. JDBC
	Section 4.3. JNDI
	Section 4.4. JNDI References in web.xml
	Section 4.5. JBoss DataSource Descriptors
	Section 4.6. JDBC Driver JARs
	Section 4.7. Database Checklist
	Section 4.8. Accessing the Database Using Ant
	Section 4.9. Creating JDBCCarDAO
	Section 4.10. Looking Ahead...

	Chapter 5. Hibernate and JBoss
	Section 5.1. The Pros and Cons of ORMs
	Section 5.2. Hibernate Mapping Files
	Section 5.3. Hibernate MBean Service Descriptor
	Section 5.4. Creating a HAR
	Section 5.5. Adding the HAR to the EAR
	Section 5.6. Creating a JNDI Lookup
	Section 5.7. Hibernate Checklist
	Section 5.8. HibernateCarDAO
	Section 5.9. Adding a Car
	Section 5.10. Editing a Car
	Section 5.11. Deleting a Car
	Section 5.12. Looking Ahead...

	Chapter 6. Stateless Session Beans
	Section 6.1. Issues with EJBs
	Section 6.2. Should I Use EJB or Not?
	Section 6.3. Business Tier
	Section 6.4. Enterprise JavaBeans
	Section 6.5. Our Example
	Section 6.6. Iteration 1Introduce a Session Bean
	Section 6.7. Calling the Session Bean from the Controller Servlet
	Section 6.8. EJB-Based JNDI References in Web-Based Deployment Descriptors
	Section 6.9. Session Bean Types
	Section 6.10. Session Beans
	Section 6.11. Remote Versus Local EJB Calls
	Section 6.12. Local and Remote Interfaces
	Section 6.13. Home Interfaces
	Section 6.14. Reviewing Iteration 1
	Section 6.15. Testing Iteration 1
	Section 6.16. Iteration 2Move Business Logic Out of the Controller
	Section 6.17. Reviewing Iteration 2
	Section 6.18. Testing Iteration 2
	Section 6.19. Iteration 3Buy a Car
	Section 6.20. The AccountingDTO
	Section 6.21. Developing the HibernateAccountingDAO
	Section 6.22. Adding buyCar() to the InventoryFacadeBean
	Section 6.23. Reviewing Iteration 3
	Section 6.24. Testing Iteration 3
	Section 6.25. Final Thoughts on Session Beans
	Section 6.26. Looking Ahead ...

	Chapter 7. Java Message Service (JMS) and Message-Driven Beans
	Section 7.1. Sending Messages with JMS
	Section 7.2. Upgrade the Site: Running a Credit Check
	Section 7.3. JMS Architecture Overview
	Section 7.4. JMS Messaging Models
	Section 7.5. Creating a Message
	Section 7.6. Sending the Message
	Section 7.7. Core JMS API
	Section 7.8. Sending a JMS Message
	Section 7.9. JMS-Based JNDI References in Web-Based Deployment Descriptors
	Section 7.10. Deploying JMS Destinations on JBoss
	Section 7.11. JMS Checklist
	Section 7.12. Message-Driven Beans (MDBs)
	Section 7.13. MDB Checklist
	Section 7.14. Testing the Credit Check
	Section 7.15. Looking Ahead ...

	Chapter 8. JavaMail
	Section 8.1. Running a Credit Check
	Section 8.2. Sending Email Messages with JavaMail
	Section 8.3. Upgrading the MDB to Send an Email Message
	Section 8.4. Sending an Email Message
	Section 8.5. JavaMail-Based JNDI References in EJB Deployment Descriptors
	Section 8.6. Automating JavaMail-Based JNDI References with XDoclet
	Section 8.7. Deploying JavaMail on JBoss
	Section 8.8. JavaMail Checklist
	Section 8.9. Testing the Credit Check Notification Email
	Section 8.10. Looking Ahead ...

	Chapter 9. Security
	Section 9.1. J2EE Security
	Section 9.2. Web-Based Security
	Section 9.3. Restricting Access with web.xml
	Section 9.4. JAAS
	Section 9.5. Deploying a JAAS-Based Security Realm on JBoss
	Section 9.6. Testing Secure JSPs
	Section 9.7. Protecting the Administrative Actions
	Section 9.8. Web Security Checklist
	Section 9.9. Integrating Web Tier and EJB Tier Security
	Section 9.10. EJB Security
	Section 9.11. EJB Security Checklist
	Section 9.12. Looking Ahead ...

	Chapter 10. Web Services
	Section 10.1. Web Services Architecture
	Section 10.2. JBoss 4.x and Web Services
	Section 10.3. J2EE 1.4 and Web Services
	Section 10.4. Implementing J2EE 1.4 Web Services
	Section 10.5. Service Endpoint Interface (SEI)
	Section 10.6. Modifying ejb-jar.xml
	Section 10.7. webservices.xml
	Section 10.8. JAX-RPC Mapping File
	Section 10.9. WSDL File
	Section 10.10. Set the Web Service URL
	Section 10.11. Modifying the InventoryFacadeBean EJB
	Section 10.12. Web Services Deployment
	Section 10.13. Automating Web Services Deployment
	Section 10.14. J2EE Web Services Checklist
	Section 10.15. Testing Web Services Deployment
	Section 10.16. Web Services Client
	Section 10.17. Implementing a Web Service Client
	Section 10.18. Web Service Client Checklist
	Section 10.19. Testing the Web Service Client
	Section 10.20. Final Thoughts on J2EE 1.4 Web Services
	Section 10.21. Conclusion
	Section 10.22. Congratulations!

	Appendix A. ClassLoaders and JBoss
	Section A.1. Namespaces
	Section A.2. Class Loading in the J2EE
	Section A.3. Class Loading with JBoss
	Section A.4. Common ClassLoader Issues
	Section A.5. ClassLoader Options
	Section A.6. Solving ClassLoader Issues
	Section A.7. Conclusion

	Appendix B. Logging and JBoss
	Section B.1. Jakarta Commons Logging (JCL) API
	Section B.2. Apache Log4J
	Section B.3. Adding Application-Specific Properties to System Properties
	Section B.4. Configuring Log4J with a Configuration File
	Section B.5. Loading Resources from the CLASSPATH
	Section B.6. Logging Deployment
	Section B.7. Logging Checklist
	Section B.8. Testing Logging
	Section B.9. Conclusion

	Appendix C. JAAS Tutorial
	Section C.1. JAAS
	Section C.2. Client-Side JAAS
	Section C.3. Conclusion

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

